Title: Accurately modelling extreme-mass-ratio inspirals: beyond the geodesic approximation

Speakers: Adam Pound

Series: Strong Gravity

Date: January 16, 2020 - 1:00 PM

URL: http://pirsa.org/20010087

Abstract: Recent observations of gravitational waves represent a remarkable success of our theoretical models of relativistic binaries. However, accurate models are largely restricted to binaries in which the two members have roughly equal masses; for binaries with more disparate masses, modelling is less mature. This is especially relevant for extreme-mass-ratio inspirals (EMRIs), in which a stellar-mass object orbits a supermassive black hole in a galactic core. EMRIs are uniquely precise probes of black hole spacetimes, and they will be key targets for the space-based detector LISA. They are best modelled by gravitational self-force theory, in which the smaller object generates a small gravitational perturbation that reacts back on it to exert a "self-force", accelerating the object away from geodesic motion. For LISA science, we must work to second order in this perturbative treatment. In this talk, I discuss the foundations of self-force theory, its application to EMRIs, and the current status of first- and second-order models.

Pirsa: 20010087 Page 1/69

Accurately modelling extreme-mass-ratio inspirals: beyond the geodesic approximation

Adam Pound

Perimeter Institute

16 January 2020

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

1/32

Pirsa: 20010087 Page 2/69

Gravitational waves and binary systems

- compact objects (black holes or neutron stars) strongly curve the spacetime around them
- their motion in a binary generates gravitational waves, small ripples in spacetime

- waves propagate to detector
- to extract meaningful information from a signal, we require models that relate the waveform to the source

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

2/32

Pirsa: 20010087 Page 3/69

Compact binary detections

Four years ago, LIGO first detected the gravitational waves from a black hole binary merger...

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

3/32

Pirsa: 20010087 Page 4/69

Compact binary detections

Four years ago, LIGO first detected the gravitational waves from a black hole binary merger...

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

3 / 32

Pirsa: 20010087 Page 5/69

Compact binary detections

Four years ago, LIGO first detected the gravitational waves from a black hole binary merger...

Pirsa: 20010087 Page 6/69

Many types of binaries

- LIGO is only sensitive to comparable-mass binaries
- different classes of binaries will be observed by different detectors and tell us different things

Adam Pound (Perimeter Institute)

16 January 2020

Accurately modelling EMRIs

Pirsa: 20010087 Page 7/69

Extreme-mass-ratio inspirals (EMRIs)

- space-based detector LISA will observe extreme-mass-ratio inspirals of stellar-mass BHs or neutron stars into massive BHs
- small object spends $\sim M/m \sim 10^5 \text{ orbits near BH} \\ \Rightarrow \text{unparalleled probe of} \\ \text{strong-field region around BH}$

- emitted waveforms are intricate and long-lived in the LISA band
- contain a wealth of information

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

5/32

Pirsa: 20010087 Page 8/69

Pirsa: 20010087

EMRI science yield

Fundamental physics

- measure central BH parameters: mass and spin to $\sim .01\%$ error, quadrupole moment to $\sim .1\%$
 - \Rightarrow measure deviations from the Kerr relationship $M_l + iS_l = M(ia)^l$
 - ⇒ test no-hair theorem
- measure deviations from Kerr QNMs, presence or absence of event horizon, additional wave polarizations, changes to power spectrum
- constraints on modified gravity typically one or more orders of magnitude better than any other planned experiment

Astrophysics

- constrain mass function n(M) (number of black holes with given mass)
- provide information about stellar environment around massive BHs

Cosmology

• measure Hubble constant to $\sim 1\%$

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

/ 32

Pirsa: 20010087 Page 10/69

EMRI modeling: why self-force?

- highly relativistic, strong fields
- disparate lengthscales

• long timescale: inspiral is slow, produces $\sim \frac{M}{m} \sim 10^5$ wave cycles

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

EMRI modeling: why self-force?

- highly relativistic, strong fields
 ⇒ can't use post-Newtonian theory
- disparate lengthscales

• long timescale: inspiral is slow, produces $\sim \frac{M}{m} \sim 10^5$ wave cycles

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

7 / 22

Pirsa: 20010087 Page 12/69

Zeroth-order approx.: point mass on a geodesic in Kerr

[image courtesy of Steve Drasco]

- geodesic characterized by three constants of motion:
 - $oldsymbol{0}$ energy E
 - 2 angular momentum L_z
 - 3 Carter constant Q, related to orbital inclination

- E, L_z , Q related to frequencies of r, ϕ , and θ motion
- emitted waveform has all harmonics of these frequencies
- (and resonances occur when two of the frequencies have a rational ratio)

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

/ 32

Pirsa: 20010087 Page 13/69

But GWs carry off energy and ang. momentum, and the small object slowly spirals into the black hole... [animation courtesy of Steve Drasco]

Pirsa: 20010087 Page 14/69

Accurately modelling EMRIs

16 January 2020

Adam Pound (Perimeter Institute)

[animation courtesy of Steve Drasco]

Adam Pound (Perimeter Institute) Accurately modelling EMRIs 16 January 2020 9 / 32

Pirsa: 20010087 Page 15/69

[animation courtesy of Steve Drasco]

Adam Pound (Perimeter Institute) Accurately modelling EMRIs 16 January 2020 9 / 32

Pirsa: 20010087 Page 16/69

[animation courtesy of Steve Drasco]

Adam Pound (Perimeter Institute) Accurately modelling EMRIs 16 January 2020 9 / 32

Pirsa: 20010087 Page 17/69

[animation courtesy of Steve Drasco]

Adam Pound (Perimeter Institute) Accurately modelling EMRIs 16 January 2020 9 / 32

Pirsa: 20010087 Page 18/69

[animation courtesy of Steve Drasco]

Adam Pound (Perimeter Institute) Accurately modelling EMRIs 16 January 2020 9 / 32

Pirsa: 20010087 Page 19/69

[animation courtesy of Steve Drasco]

Adam Pound (Perimeter Institute) Accurately modelling EMRIs 16 January 2020

Pirsa: 20010087 Page 20/69

[animation courtesy of Steve Drasco]

Adam Pound (Perimeter Institute) Accurately modelling EMRIs 16 January 2020

Pirsa: 20010087 Page 21/69

[animation courtesy of Steve Drasco]

Adam Pound (Perimeter Institute) Accurately modelling EMRIs 16 January 2020

Pirsa: 20010087 Page 22/69

[animation courtesy of Steve Drasco]

Adam Pound (Perimeter Institute) Accurately modelling EMRIs 16 January 2020

Pirsa: 20010087 Page 23/69

Adam Pound (Perimeter Institute)

Pirsa: 20010087 Page 24/69

Accurately modelling EMRIs

16 January 2020

But GWs carry off energy and ang. momentum, and the small object slowly spirals into the black hole... [animation courtesy of Steve Drasco]

Pirsa: 20010087 Page 25/69

Accurately modelling EMRIs

16 January 2020

Adam Pound (Perimeter Institute)

Outline

- Intro to EMRIs
- **2** EMRI model requirements
- 3 Self-force theory: the local problem
- 4 Self-force theory: the global problem First order

Second order

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

10 / 32

Pirsa: 20010087 Page 26/69

Gravitational self-force theory

• m perturbs the spacetime of M:

$$\mathbf{g}_{\mu\nu} = g_{\mu\nu} + \epsilon h_{\mu\nu}^1 + \epsilon^2 h_{\mu\nu}^2 + \dots$$

where $\epsilon \sim m/M$

this deformation of the geometry affects m's motion
 ⇒ exerts a self-force

$$\frac{D^2 z^{\mu}}{d\tau^2} = \epsilon F_1^{\mu} + \epsilon^2 F_2^{\mu} + \dots$$

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

How high order?

$$\frac{D^2 z^{\mu}}{d\tau^2} = \epsilon F_1^{\mu} + \epsilon^2 F_2^{\mu} + \dots$$

- force is small; inspiral occurs very slowly, on time scale $\tau \sim 1/\epsilon$
- suppose we neglect F_2^μ ; leads to error $\delta\Big(\frac{D^2z^\mu}{d\tau^2}\Big)\sim\epsilon^2$
 - \Rightarrow error in position $\delta z^{\mu} \sim \epsilon^2 \tau^2$
 - \Rightarrow after time $\tau \sim 1/\epsilon$, error $\delta z^{\mu} \sim 1$
- accurately describing orbital evolution requires second order

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

Hierarchy of self-force models [Hinderer and Flanagan]

- ullet when self-force is accounted for, E, L_z , and Q evolve with time
- on an inspiral timescale $t\sim 1/\epsilon$, the phase of the gravitational wave has an expansion (excluding resonances)

$$\phi = \frac{1}{\epsilon}\phi_0 + \phi_1 + O(\epsilon)$$

- ullet a model that gets ϕ_0 right should (hopefully) be enough to detect most signals
- a model that gets both ϕ_0 and ϕ_1 should be enough for prescise parameter extraction

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

Hierarchy of self-force models [Hinderer and Flanagan]

Adiabatic order

determined by

, E, L_z , and Q evolve with time

ullet averaged dissipative piece of F_1^μ , the phase of the gravitational wave has an expansion (excluding resonances)

$$\phi = \frac{1}{\epsilon} \phi_0 + \phi_1 + O(\epsilon)$$

- \bullet a model that gets ϕ_0 right should (hopefully) be enough to detect most signals
- a model that gets both ϕ_0 and ϕ_1 should be enough for prescise parameter extraction

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

Hierarchy of self-force models [Hinderer and Flanagan]

Adiabatic order

determined by

ullet averaged dissipative piece of F_1^μ

an expansion (excluding resonances)

Post-adiabatic order

determined by

- ullet averaged dissipative piece of F_2^μ
- ullet conservative piece of F_1^μ
- ullet oscillatory dissipative piece of F_1^μ

$$\phi = \frac{1}{\epsilon} \phi_0 + \phi_1 + O(\epsilon)$$

- ullet a model that gets ϕ_0 right should (hopefully) be enough to detect most signals
- a model that gets both ϕ_0 and ϕ_1 should be enough for prescise parameter extraction

0

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

14 / 32

Pirsa: 20010087 Page 31/69

What is the status of these models?

- \bullet Efficient method of calculating adiabatic inspirals was developed ~ 15 years ago
- Most effort over last 23 years has been on calculating full F_1^μ —but this isn't an improvement over adiabatic approximation if we don't also have averaged dissipative piece of F_2^μ

0

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

1E / 22

Pirsa: 20010087 Page 32/69

Outline 3 Self-force theory: the local problem 0

Pirsa: 20010087 Page 33/69

Accurately modelling EMRIs

16 January 2020

Adam Pound (Perimeter Institute)

Pirsa: 20010087 Page 34/69

What is the problem we want to solve?

A small, compact object of mass and size $m \sim l \sim \epsilon$ moves through (and influences) spacetime

• Option 2: restrict the problem to distances $s\gg m$ from the object, treat m as source of perturbation of external background $g_{\mu\nu}$:

$$g_{\mu\nu} = g_{\mu\nu} + \epsilon h_{\mu\nu}^1 + \epsilon^2 h_{\mu\nu}^2 + \dots$$

• This is a free boundary value problem

Metric here must agree with metric outside a small compact object; and "here" moves in response to field

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

What is the problem we want to solve?

A small, compact object of mass and size $m \sim l \sim \epsilon$ moves through (and influences) spacetime

- Option 3: treat the body as a point particle
 - takes behavior of fields outside object and extends it down to a fictitious worldline
 - so $h_{\mu\nu}^1 \sim 1/s$ (s=distance from object)
 - second-order field equation $\delta G[h^2] \sim -\delta^2 G[h^1] \sim (\partial h^1)^2 \sim 1/s^4$ —no solution unless we restrict it to points off worldline, which is equivalent to FBVP

Distributionally ill defined source appears here!

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

What is the problem we want to solve?

A small, compact object of mass and size $m \sim l \sim \epsilon$ moves through (and influences) spacetime

- Option 4: transform the FBVP into an effective problem using a puncture, a local approximation to the field outside the object
- This will be the method emphasized here [Mino, Sasaki, Tanaka 1996; Quinn & Wald 1996; Detweiler & Whiting 2002-03; Gralla & Wald 2008-2012; Pound 2009-2017; Harte 2012]

0

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

17/32

Pirsa: 20010087 Page 37/69

Matched asymptotic expansions

- ullet outer expansion: in external universe, treat field of M as background
- inner expansion: in inner region, treat field of m as background
- in buffer region, feed information from inner expansion into outer expansion

0

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

18 / 32

Pirsa: 20010087 Page 38/69

Self-field and effective field

 based on local solution to EFE in buffer region, we split local metric into a "self-field" and an effective metric

- $h_{\mu\nu}^{\rm S}$ directly determined by object's multipole moments
- $g_{\mu\nu} + h^{\rm R}_{\mu\nu}$ is a smooth vacuum metric determined by global boundary conditions

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

Solving EFE in buffer region yields equations of motion for object's effective center of mass

1st order, arbitrary compact object [MiSaTaQuWa 1996]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\alpha\delta} + u^{\alpha} u^{\delta} \right) \left(2h^{\mathrm{R1}}_{\delta\beta;\gamma} - h^{\mathrm{R1}}_{\beta\gamma;\delta} \right) u^{\beta} u^{\gamma} + \frac{1}{2m} R^{\alpha}{}_{\beta\gamma\delta} u^{\beta} S^{\gamma\delta} + O(m^2)$$

(motion of spinning test body in $g_{\mu
u} + h^{\mathrm{R} \, 1}_{\mu
u}$)

2nd-order, nonspinning, spherical compact object [Pound 2012]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\mu\nu} + u^{\mu} u^{\nu} \right) \left(g_{\nu}{}^{\rho} - h_{\nu}^{R\rho} \right) \left(2h_{\rho\sigma;\lambda}^{R} - h_{\sigma\lambda;\rho}^{R} \right) u^{\sigma} u^{\lambda} + O(m^3)$$

(geodesic motion in $g_{\mu
u} + h_{\pi
u}^{
m R}$)

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

Solving EFE in buffer region yields equations of motion for object's effective center of mass

1st order, arbitrary compact object [MiSaTaQuWa 1996]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\alpha\delta} + u^{\alpha} u^{\delta} \right) \left(2h^{\text{R1}}_{\delta\beta;\gamma} - h^{\text{R1}}_{\beta\gamma;\delta} \right) u^{\beta} u^{\gamma} + \frac{1}{2m} R^{\alpha}{}_{\beta\gamma\delta} u^{\beta} S^{\gamma\delta} + O(m^2)$$

(motion of spinning test body in $g_{\mu\nu}+h^{\rm R1}_{\mu\nu}$)

2nd-order, nonspinning, spherical compact object [Pound 2012]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\mu\nu} + u^{\mu} u^{\nu} \right) \left(g_{\nu}{}^{\rho} - h_{\nu}^{R\rho} \right) \left(2h_{\rho\sigma;\lambda}^{R} - h_{\sigma\lambda;\rho}^{R} \right) u^{\sigma} u^{\lambda} + O(m^3)$$

(geodesic motion in $g_{\mu\nu} + h_{\mu\nu}^{\rm R}$)

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

Solving EFE in buffer region yields equations of motion for object's effective center of mass

1st order, arbitrary compact object [MiSaTaQuWa 1996]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\alpha\delta} + u^{\alpha} u^{\delta} \right) \left(2h^{\mathrm{R1}}_{\delta\beta;\gamma} - h^{\mathrm{R1}}_{\beta\gamma;\delta} \right) u^{\beta} u^{\gamma} + \frac{1}{2m} R^{\alpha}{}_{\beta\gamma\delta} u^{\beta} S^{\gamma\delta} + O(m^2)$$

(motion of spinning test body in $g_{\mu\nu}+h^{\rm R1}_{\mu\nu}$)

2nd-order, nonspinning, spherical compact object [Pound 2012]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\mu\nu} + u^{\mu} u^{\nu} \right) \left(g_{\nu}{}^{\rho} - h_{\nu}^{R\rho} \right) \left(2h_{\rho\sigma;\lambda}^{R} - h_{\sigma\lambda;\rho}^{R} \right) u^{\sigma} u^{\lambda} + O(m^3)$$

(geodesic motion in $g_{\mu\nu}+h^{\rm R}_{\mu\nu})$

• these results are derived directly from EFE outside the object; there's no regularization of infinities, and no assumptions about $h_{\mu\nu}^{\rm R}$

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

• replace "self-field" with "singular field"

• at 1st order, can use this to replace object with a point particle

$$T_{\mu\nu}^{1} := \frac{1}{8\pi} \delta G_{\mu\nu}[h^{1}] \sim m\delta(x-z)$$

• beyond 1st order, point particles not well defined—but can replace object with a *puncture*, a local singularity in the field, moving on z^{μ} , equipped with the object's multipole moments

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

• replace "self-field" with "singular field"

• at 1st order, can use this to replace object with a point particle

$$T_{\mu\nu}^{1} := \frac{1}{8\pi} \delta G_{\mu\nu}[h^{1}] \sim m\delta(x-z)$$

• beyond 1st order, point particles not well defined—but can replace object with a *puncture*, a local singularity in the field, moving on z^{μ} , equipped with the object's multipole moments

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

replace "self-field" with "singular field"

• at 1st order, can use this to replace object with a point particle

$$T^{1}_{\mu\nu} := \frac{1}{8\pi} \delta G_{\mu\nu}[h^{1}] \sim m\delta(x-z)$$

• beyond 1st order, point particles not well defined—but can replace object with a *puncture*, a local singularity in the field, moving on z^{μ} , equipped with the object's multipole moments

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

replace "self-field" with "singular field"

• at 1st order, can use this to replace object with a point particle

$$T_{\mu\nu}^1 := \frac{1}{8\pi} \delta G_{\mu\nu}[h^1] \sim m\delta(x-z)$$

• beyond 1st order, point particles not well defined—but can replace object with a *puncture*, a local singularity in the field, moving on z^{μ} , equipped with the object's multipole moments

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

How you replace an object with a puncture

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

Solving the Einstein equations globally

 solving the local problem told us how to replace the small object with a moving puncture in the field equations:

$$\delta G_{\mu\nu}[h^{\mathcal{R}^{1}}] = -\delta G_{\mu\nu}[h^{\mathcal{P}^{1}}]
\delta G_{\mu\nu}[h^{\mathcal{R}^{2}}] = -\delta^{2} G_{\mu\nu}[h^{1}, h^{1}] - \delta G_{\mu\nu}[h^{\mathcal{P}^{2}}]
\frac{D^{2}z^{\mu}}{d\tau^{2}} = -\frac{1}{2}(g^{\mu\nu} + u^{\mu}u^{\nu})(g_{\nu}{}^{\delta} - h_{\nu}^{\mathcal{R}^{\delta}})(2h_{\delta\beta;\gamma}^{\mathcal{R}} - h_{\beta\gamma;\delta}^{\mathcal{R}})u^{\beta}u^{\gamma}$$

where $\delta G_{\mu\nu}[h] \sim \Box h_{\mu\nu}$, $\delta^2 G_{\mu\nu}[h,h] \sim \partial h \partial h + h \partial^2 h$

• the global problem: how do we solve these equations in practice?

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

Solving the Einstein equations globally

 solving the local problem told us how to replace the small object with a moving puncture in the field equations:

$$\delta G_{\mu\nu}[h^{\mathcal{R}^{1}}] = -\delta G_{\mu\nu}[h^{\mathcal{P}^{1}}]
\delta G_{\mu\nu}[h^{\mathcal{R}^{2}}] = -\delta^{2} G_{\mu\nu}[h^{1}, h^{1}] - \delta G_{\mu\nu}[h^{\mathcal{P}^{2}}]
\frac{D^{2}z^{\mu}}{d\tau^{2}} = -\frac{1}{2}(g^{\mu\nu} + u^{\mu}u^{\nu})(g_{\nu}{}^{\delta} - h_{\nu}^{\mathcal{R}^{\delta}})(2h_{\delta\beta;\gamma}^{\mathcal{R}} - h_{\beta\gamma;\delta}^{\mathcal{R}})u^{\beta}u^{\gamma}$$

where $\delta G_{\mu\nu}[h] \sim \Box h_{\mu\nu}$, $\delta^2 G_{\mu\nu}[h,h] \sim \partial h \partial h + h \partial^2 h$

• the global problem: how do we solve these equations in practice?

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

Typical calculation at first order

[Barack et al, Evans et al, van de Meent, many others]

- approximate the source orbit as a bound geodesic
- impose outgoing-wave BCs at \mathcal{I}^+ and \mathcal{H}^+
- solve field equation numerically, compute self-force from solution
- breaks down on dephasing time $\sim 1/\sqrt{\epsilon}$, when $|z^{\mu}-z_{0}^{\mu}|\sim M$

0

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

25/32

Pirsa: 20010087 Page 50/69

Typical calculation at first order

[Barack et al, Evans et al, van de Meent, many others]

- approximate the source orbit as a bound geodesic
- impose outgoing-wave BCs at \mathcal{I}^+ and \mathcal{H}^+
- solve field equation numerically, compute self-force from solution
- breaks down on dephasing time $\sim 1/\sqrt{\epsilon}$, when $|z^{\mu}-z_{0}^{\mu}|\sim M$

0

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

- complete inspirals simulated in Schwarzschild using full F_1^μ (including spin force) [Warburton et al]
- and F_1^μ has been computed on generic orbits in Kerr [van de Meent]
- but still need F_2^{μ} for post-adiabatic inspiral

0

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

6 / 22

Pirsa: 20010087 Page 52/69

- ullet complete inspirals simulated in Schwarzschild using full F_1^μ (including spin force) [Warburton et al]
- and F_1^μ has been computed on generic orbits in Kerr [van de Meent]
- but still need F_2^{μ} for post-adiabatic inspiral

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

6 / 22

Pirsa: 20010087 Page 53/69

- ullet complete inspirals simulated in Schwarzschild using full F_1^μ (including spin force) [Warburton et al]
- and F_1^μ has been computed on generic orbits in Kerr [van de Meent]
- but still need F_2^{μ} for post-adiabatic inspiral

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

6 / 22

Pirsa: 20010087 Page 54/69

- ullet complete inspirals simulated in Schwarzschild using full F_1^μ (including spin force) [Warburton et al]
- and F_1^μ has been computed on generic orbits in Kerr [van de Meent]
- but still need F_2^{μ} for post-adiabatic inspiral

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

6 / 22

Pirsa: 20010087 Page 55/69

- ullet complete inspirals simulated in Schwarzschild using full F_1^μ (including spin force) [Warburton et al]
- and F_1^μ has been computed on generic orbits in Kerr [van de Meent]
- but still need F_2^{μ} for post-adiabatic inspiral

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

6 / 22

Pirsa: 20010087 Page 56/69

- ullet complete inspirals simulated in Schwarzschild using full F_1^μ (including spin force) [Warburton et al]
- and F_1^μ has been computed on generic orbits in Kerr [van de Meent]
- but still need F_2^{μ} for post-adiabatic inspiral

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

6 / 22

Pirsa: 20010087 Page 57/69

- ullet complete inspirals simulated in Schwarzschild using full F_1^μ (including spin force) [Warburton et al]
- and F_1^μ has been computed on generic orbits in Kerr [van de Meent]
- but still need F_2^{μ} for post-adiabatic inspiral

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

6 / 22

Pirsa: 20010087 Page 58/69

- ullet complete inspirals simulated in Schwarzschild using full F_1^μ (including spin force) [Warburton et al]
- and F_1^μ has been computed on generic orbits in Kerr [van de Meent]
- but still need F_2^{μ} for post-adiabatic inspiral

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

6 / 22

Pirsa: 20010087 Page 59/69

- complete inspirals simulated in Schwarzschild using full F_1^μ (including spin force) [Warburton et al]
- and F_1^μ has been computed on generic orbits in Kerr [van de Meent]
- but still need F_2^μ for post-adiabatic inspiral

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

6 / 22

Pirsa: 20010087 Page 60/69

Infrared problems at second order [Pound 2015]

- suppose we try to use "typical" $h^1_{\mu\nu}$ to construct source for $h^2_{\mu\nu}$
- because $|z^{\mu}-z_{0}^{\mu}|$ blows up with time, $h_{\mu\nu}^{2}$ does likewise
- because $h^1_{\mu\nu}$ contains outgoing waves at all past times, the source $\delta^2 R_{\mu\nu}[h^1]$ decays too slowly, and its retarded integral does not exist
- instead, we must construct a uniform approximation
 - $h_{\mu\nu}^{\rm I}$ must include evolution of orbit
 - radiation must decay to zero in infinite past

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

Matched expansions [Pound, Miller, Moxon, Flanagan, Hinderer, Yamada,

Isoyama, Tanaka]

Multiscale expansion

$$J^{\alpha} = J_0^{\alpha}(\tilde{t}) + \epsilon J_1^{\alpha}(\tilde{t}) + \dots$$
$$h_{\mu\nu}^n \sim \sum_{k^{\alpha}} h_{k_{\alpha}}^n(\tilde{t}) e^{-ik^{\alpha}q_{\alpha}(\tilde{t})}$$

- (J^{α},q_{α}) are action-angle variables for z^{μ} , and $\tilde{t}\sim\epsilon t$ is a "slow time"
- solve for $h_{k^{\alpha}}^{n}$ at fixed \tilde{t} with standard frequency-domain techniques

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

29 / 3

Page 62/69

Matched expansions [Pound, Miller, Moxon, Flanagan, Hinderer, Yamada,

Isoyama, Tanakal

Multiscale expansion

$$J^{\alpha} = J_0^{\alpha}(\tilde{t}) + \epsilon J_1^{\alpha}(\tilde{t}) + \dots$$
$$h_{\mu\nu}^n \sim \sum_{k^{\alpha}} h_{k_{\alpha}}^n(\tilde{t}) e^{-ik^{\alpha}q_{\alpha}(\tilde{t})}$$

- (J^{α},q_{α}) are action-angle variables for z^{μ} , and $\tilde{t}\sim\epsilon t$ is a "slow time"
- solve for $h_{k^{\alpha}}^{n}$ at fixed \tilde{t} with standard frequency-domain techniques

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

Binding energy [Pound, Wardell, Warburton, Miller]

Second-order piece of $E_{\mathrm{bind}} = M_{\mathrm{Bondi}} - m - M_{BH}$

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

Calculations performed as of 2005

Adiabatic 1st order 2nd order

Schwarz.

circular
generic

circular

circular

holy grail

Adam Pound (Perimeter Institute)

•

Accurately modelling EMRIs

16 January 2020

31 / 32

Pirsa: 20010087

Calculations performed as of 2019

Adiabatic 1st order 2nd order

Schwarz.

circular

generic

circular

circular

v

holy grail

Adam Pound (Perimeter Institute)

•

Accurately modelling EMRIs

16 January 2020

31 / 32

Pirsa: 20010087

Conclusion

Challenge

 accurate (post-adiabatic) model requires second-order self-force calculations for generic bound orbits in Kerr

Prospects

- adiabatic inspirals should suffice for signal detection in most cases.
 Templates are on the way.
- post-adiabatic inspirals should enable high-precision parameter estimation. Lots of work to do.

For more information, see recent review by Barack and Pound (arXiv:1805.10385)

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

2 / 22

Pirsa: 20010087 Page 67/69

Solving EFE in buffer region yields equations of motion for object's effective center of mass

1st order, arbitrary compact object [MiSaTaQuWa 1996]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\alpha\delta} + u^{\alpha} u^{\delta} \right) \left(2h^{\text{R1}}_{\delta\beta;\gamma} - h^{\text{R1}}_{\beta\gamma;\delta} \right) u^{\beta} u^{\gamma} + \frac{1}{2m} R^{\alpha}{}_{\beta\gamma\delta} u^{\beta} S^{\gamma\delta} + O(m^2)$$

(motion of spinning test body in $g_{\mu
u} + h^{
m R1}_{\mu
u})$

2nd-order, nonspinning, spherical compact object [Pound 2012]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\mu\nu} + u^{\mu} u^{\nu} \right) \left(g_{\nu}{}^{\rho} - h_{\nu}^{R\rho} \right) \left(2h_{\rho\sigma;\lambda}^{R} - h_{\sigma\lambda;\rho}^{R} \right) u^{\sigma} u^{\lambda} + O(m^3)$$

(geodesic motion in $g_{\mu\nu}+h^{
m R}_{\mu
u}$)

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020

Solving EFE in buffer region yields equations of motion for object's effective center of mass

1st order, arbitrary compact object [MiSaTaQuWa 1996]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\alpha\delta} + u^{\alpha} u^{\delta} \right) \left(2h^{\mathrm{R1}}_{\delta\beta;\gamma} - h^{\mathrm{R1}}_{\beta\gamma;\delta} \right) u^{\beta} u^{\gamma} + \frac{1}{2m} R^{\alpha}{}_{\beta\gamma\delta} u^{\beta} S^{\gamma\delta} + O(m^2)$$

(motion of spinning test body in $g_{\mu\nu}+h_{\mu\nu}^{\rm R1}$)

2nd-order, nonspinning, spherical compact object [Pound 2012]:

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} \left(g^{\mu\nu} + u^{\mu} u^{\nu} \right) \left(g_{\nu}{}^{\rho} - h_{\nu}^{R\rho} \right) \left(2h_{\rho\sigma;\lambda}^{R} - h_{\sigma\lambda;\rho}^{R} \right) u^{\sigma} u^{\lambda} + O(m^3)$$

(geodesic motion in $g_{\mu\nu}+h_{\mu\nu}^{
m R}$)

• these results are derived directly from EFE outside the object; there's no regularization of infinities, and no assumptions about $h_{\mu\nu}^{\rm R}$

Adam Pound (Perimeter Institute)

Accurately modelling EMRIs

16 January 2020