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Abstract: Recent observations of gravitational waves represent a remarkable success of our theoretical models of relativistic binaries. However,
accurate models are largely restricted to binaries in which the two members have roughly equal masses; for binaries with more disparate masses,
modelling is less mature. This is especially relevant for extreme-mass-ratio inspirals (EMRIS), in which a stellar-mass object orbits a supermassive
black hole in a galactic core. EMRIs are uniquely precise probes of black hole spacetimes, and they will be key targets for the space-based detector
LISA. They are best modelled by gravitational self-force theory, in which the smaller object generates a small gravitational perturbation that reacts
back on it to exert a "self-force”, accelerating the object away from geodesic motion. For LISA science, we must work to second order in this
perturbative treatment. In this talk, | discuss the foundations of self-force theory, its application to EMRIs, and the current status of first- and
second-order models.
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Gravitational waves and binary systems

® compact objects (black holes or neutron
stars) strongly curve the spacetime
around them

® their motion in a binary generates
gravitational waves, small ripples in
spacetime

® waves propagate to detector

® to extract meaningful information
from a signal, we require models
that relate the waveform to the
source

Adam Pound (Perimeter Institute) Accurately modelling EMRIs 16 January 2020

Pirsa: 20010087 Page 3/69



Compact binary detections

Four years ago, LIGO first detected the gravitational waves from a black hole
binary merger...
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Compact binary detections

Four years ago, LIGO first detected the gravitational waves from a black hole
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Compact binary detections

Four years ago, LIGO first detected the gravitational waves from a black hole
binary merger...
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Many types of binaries

Binary parameter space

® LIGO is only sensitive to
comparable-mass binaries

® different classes of binaries
will be observed by
different detectors and tell
us different things ' g g
Perturbation theory,

Numerical Relativity self-force

Mass ratio ——»

[Image courtesy of Leor Barack]
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Extreme-mass-ratio inspirals (EMRIs)

® space-based detector LISA will
observe extreme-mass-ratio
inspirals of stellar-mass BHs or
neutron stars into massive BHs

small object spends

~ M /m ~ 10° orbits near BH
= unparalleled probe of
strong-field region around BH

® emitted waveforms are intricate and
long-lived in the LISA band

® contain a wealth of information
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EMRI science yield

Fundamental physics

® measure central BH parameters: mass and spin to ~ .01% error,
quadrupole moment to ~ .1%
= measure deviations from the Kerr relationship M; +1.5; = M (ia)
= test no-hair theorem

® measure deviations from Kerr QNMs, presence or absence of event
horizon, additional wave polarizations, changes to power spectrum

® constraints on modified gravity typically one or more orders of magnitude
better than any other planned experiment
Astrophysics

® constrain mass function n(M) (number of black holes with given mass)
® provide information about stellar environment around massive BHs
Cosmology

® measure Hubble constant to ~ 1%
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EMRI modeling: why self-force?

® highly relativistic, strong fields

® disparate lengthscales

® |ong timescale: inspiral is slow, produces ~ % ~ 10” wave cycles
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EMRI modeling: why self-force?

® highly relativistic, strong fields
= can't use post-Newtonian theory

® disparate lengthscales

® |ong timescale: inspiral is slow, produces ~ % ~ 10” wave cycles
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Zeroth-order approx.: point mass on a geodesic in Kerr

® geodesic characterized by three
constants of motion:

@ ecnergy F

® angular momentum L.

© Carter constant (), related to orbital
inclination

[image courtesy of Steve Drascol

e I, L., Q related to frequencies of r, ¢», and # motion
® emitted waveform has all harmonics of these frequencies

® (and resonances occur when two of the frequencies have a rational ratio)
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But GWs carry off energy and ang. momentum, and the small object slowly
spirals into the black hole...

[animation courtesy of Steve Drasco|
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But GWs carry off energy and ang. momentum, and the small object slowly
spirals into the black hole...
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Outline

® Intro to EMRIs

® EMRI model requirements

© Self-force theory: the local problem

O Self-force theory: the global problem
First order
Second order
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Gravitational self-force theory

® m perturbs the spacetime of M:

— 1 272
g,uu = Yuv + Eh‘;w +¢ h;m +.o

where € ~ m /M
® this deformation of the geometry affects m's motion
= exerts a self-force

D2

3 271
— = ¢k I’J + e 4
dr+ “
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How high order?

D21 L
— ="' +F) + ..

dr?

force is small; inspiral occurs very slowly, on time scale 7 ~ 1/¢

])‘J:_'fl B

. - 2
suppose we neglect F;'; leads to error ) (Tr—) ~ €

= error in position 2" ~ €272
= after time 7 ~ 1/¢, error §z/* ~ 1
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Hierarchy of self-force models [Hinderer and Flanagan]

when self-force is accounted for, I, L., and () evolve with time

on an inspiral timescale t ~ 1/¢, the phase of the gravitational wave has
an expansion (excluding resonances)

1 | -
O = —_(/)“ + ¢ + ()(6)
€

a model that gets ¢ right should (hopefully) be enough to detect most
signals

a model that gets both ¢, and ¢, should be enough for prescise
parameter extraction
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Hierarchy of self-force models [Hinderer and Flanagan]

Adiabatic order

determined by . F, L., and () evolve with time

e averaged dissipative piece of F|" | the phase of the gravitational wave has
ces)

+ ¢ + e)

® a model that gets ¢ right should (hopefully) be enough to detect most
signals

® 3 model that gets both ¢, and ¢, should be enough for prescise
parameter extraction
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Hierarchy of self-force models [Hinderer and Flanagan]

Post-adiabatic order

: : determined by
Adiabatic order e averaged dissipative piece of F}
determined by e conservative piece of I’

e averaged dissipative piece of I/ e oscillatory dissipative piece of F!'

>

® a model that gets ¢ right should (hopefully) be enough to detect most
signals

® 3 model that gets both ¢, and ¢, should be enough for prescise
parameter extraction
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What is the status of these models?

e Efficient method of calculating adiabatic inspirals was developed ~ 15
years ago

® Most effort over last 23 years has been on calculating full F!'
—but this isn't an improvement over adiabatic approximation if we don't

also have averaged dissipative piece of I}
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Outline

© Self-force theory: the local problem
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What is the problem we want to solve?

A small, compact object of mass and size m ~ [ ~ ¢
moves through (and influences) spacetime

® Option 1: tackle the problem directly, treat the
body as finite sized, deal with its internal
composition

Need to deal with internal
dynamics and strong fields
near object
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What is the problem we want to solve?

A small, compact object of mass and size m ~ [ ~ ¢
moves through (and influences) spacetime

® Option 2: restrict the problem to distances
s > m from the object, treat m as source of
perturbation of external background g,,,.:

| 212
g‘fu.; — _(]“.,u + ('h:l”f + € h.f“" + .

® This is a free boundary value problem

Metric here must agree with
metric outside a small
compact object; and "here"
moves in response to field
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What is the problem we want to solve?

A small, compact object of mass and size m ~ [ ~ ¢
moves through (and influences) spacetime

e Option 3: treat the body as a point particle

® takes behavior of fields outside object and
extends it down to a fictitious worldline
SO h:,,_, ~ 1/s (s =distance from object)
second-order field equation
SG[h?] ~ =6°G[h'] ~ (OR")* ~ 1 /5"
—no solution unless we restrict it to points off
worldline, which is equivalent to FBVP

Distributionally ill defined
source appears here!
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What is the problem we want to solve?

A small, compact object of mass and size m ~ [ ~ ¢
moves through (and influences) spacetime

® Option 4: transform the FBVP into an effective
problem using a puncture, a local approximation
to the field outside the object

® This will be the method emphasized here
[Mino, Sasaki, Tanaka 1996; Quinn & Wald 1996;
Detweiler & Whiting 2002-03; Gralla & Wald
2008-2012; Pound 2009-2017; Harte 2012]
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Matched asymptotic expansions

® outer expansion: in external
universe, treat field of M as
background inner region

® /nner expansion: in inner region, (s ~m)
treat field of m as background buffer

® in buffer region, feed information region
from inner expansion into outer
expansion

external universe (s ~ M)

M
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Self-field and effective field

® based on local solution to EFE in buffer region, we split local metric into
a “self-field” and an effective metric

full metric g, "self field" 7> effective metric g, + A'?

Nz fLLs

o lz.‘:i,, directly determined by object's multipole moments
® g, + Rl is a smooth vacuum metric determined by global boundary

L

conditions
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Equation of motion

Solving EFE in buffer region yields equations of motion for object’s effective
center of mass
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Equation of motion

Solving EFE in buffer region yields equations of motion for object’s effective
center of mass

1st order, arbitrary compact object [MiSaTaQuWa 1996]:

D‘.E ~ I o . -
2 L 8\(op R R1 N\ .3,y o L pa BGYS 1 (Y2
dr? 2\ uu)(2h, = higs) uPu? + gn R gasul ST+ O(m?)

(motion of spinning test body in g,,, + hy}})
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Equation of motion

Solving EFE in buffer region yields equations of motion for object’s effective
center of mass

2nd-order, nonspinning, spherical compact object [Pound 2012]:

D?zV L ~y . N
= —1(g" + u'u") (9.” hff”) (2—2/1..“ R Y uu + O(m?)

PTA ‘aAip

dr?

(geodesic motion in g, + h)},)
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Point particles and punctures

® replace “self-field” with “singular field”

full metric g,,,, "self field" hS

g

effective metric g, + f!-,lf',,
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Point particles and punctures

® replace “self-field” with “singular field”

full metric g,,,, "self field" h5

g

effective metric g, + f!-,lf',,
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Point particles and punctures

® replace “self-field” with “singular field”

full metric g,,,, effective metric g, + hl”,

singular field />

gy
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Point particles and punctures

® replace “self-field” with “singular field”

full metric g,,,, effective metric g, + hl”,

singular field />

gy

® at 1st order, can use this to replace object with a point particle

1 y
T = g(5(.:,,_,_,[/:_'} ~md(z — z)

Jv

® beyond 1st order, point particles not well defined—but can replace object
with a puncture, a local singularity in the field, moving on 2/, equipped
with the object’'s multipole moments
]
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How you replace an object with a puncture

use %%, in equation of

Jiv

motion to evolve z*

out here, solve
(‘)‘G[hl] =0

SG[h?] = —62G[h!]
in here, solve

(SG[h.'Rl] — _(5(;[});'}-’1}
OG[h™?] = —6G[h'] — 6G[h"?]
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Solving the Einstein equations globally

® solving the local problem told us how to replace the small object with a
moving puncture in the field equations:

(S(;’!”-’[I)"-Rl] - _(S(;;!i/[h-?l ]
(SC"!:.U [h \’.L—_’] - (SL-’.(;Y!”! [h] , h‘ ] ] (SC‘”U U}J_P‘)}
DB:.;.' 1 | rs

= — (9" + u"u") (g

_ h.'R ) 2/(}’( o hRﬁ Y ;“nr..
(ITQ 2 - )( O35y 3 ,_Jy)

where 6G, [h] ~ Ohyu, 6°G s [h, h] ~ OhOh + hd*h

® the global problem: how do we solve these equations in practice?
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Solving the Einstein equations globally

® solving the local problem told us how to replace the small object with a
moving puncture in the field equations:

(S(;’!”-’[I)’-Rl] - _(S(::‘:;H/[h-?l ]
(SC"!:.U [h \’.L—_’] _ (SL-’.(;Y!”! [h] 1 h‘ ] ] (SC‘”U U}J_P‘)}
DB:.;.' 1 | rs

= — (9" +u"u") (g

_ h.'R o 2/(}’( o hRﬁ O/ ;“nr..
(ITQ 2 - )( O35y 3 ,_Jy)

where 6G, [h] ~ Ohyu, 062Gy [h, h] ~ OhOh + hd"h

® the global problem{how do we solve these equations in practice?)
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Typical calculation at first order

[Barack et al, Evans et al, van de Meent, many others]

® approximate the source orbit as
a bound geodesic

® impose outgoing-wave BCs at
It and H*

¢ solve field equation numerically,
compute self-force from solution
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Typical calculation at first order

[Barack et al, Evans et al, van de Meent, many others]

Geodesic
approximation

accurate to 1st _ )
order in region approximate the source orbit as

of size a bound geodesic

<1/ve impose outgoing-wave BCs at
Z% and H™
solve field equation numerically,
compute self-force from solution

breaks down on dephasing time
~ 1/\/¢, when |2/ — 2| ~ M
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First-order force

® complete inspirals
simulated in
Schwarzschild using full
F!" (including spin force)
[Warburton et al

® and F'' has been
computed on generic

orbits in Kerr [van de
Meent]

[image courtesy of Warburton)
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First-order force
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First-order force
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First-order force
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First-order force

complete inspirals
simulated in
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and I has been
computed on generic
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First-order force

complete inspirals
simulated in
Schwarzschild using full
F!" (including spin force)
[Warburton et al

and F[' has been
computed on generic

orbits in Kerr [van de
Meent]

[image courtesy of Warburton)
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First-order force

® but still need £} for
post-adiabatic inspiral

[image courtesy of Warburton)
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Infrared problems at second order [Pound 2015]

suppose we try to use “typical”
h),, to construct source for h

L
because |2/ — z{/| blows up with

. 2 . .
time, h;,, does likewise

because h,l',,_, contains outgoing
waves at all past times, the source
0°R,,.,[h'] decays too slowly, and

its retarded integral does not exist

instead, we must construct a
uniform approximation
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Matched expansions [Pound, Miller, Moxon, Flanagan, Hinderer, Yamada,

Isoyama, Tanakal

Multiscale expansion

multiscale

expansion » e e
here JU=J5 () + e () + ..

bt ~ S b, (e o)
o

® (J“ q,) are action-angle
variables for 2/, and t ~ ¢t is a
post- “slow time"
horizon Minkowski

. — t
expansion expansion
here here

® solve for A}, at fixed ¢ with
standard frequency-domain
techniques
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Matched expansions [Pound, Miller, Moxon, Flanagan, Hinderer, Yamada,

Isoyama, Tanakal

Multiscale expansion

multiscale

expansion . . g
here JU=J5 () + e () + .

bty ~ S B, (B0
ko

® (J“ q,) are action-angle
variables for 2/, and f ~ ¢t is a
post- “slow time"
horizon Minkowski

. — t
expansion expansion
here here

® solve for hf., at fixed ¢ with
standard frequency-domain
techniques
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Blndlng €Nnergy [Pound, Wardell, Warburton, Miller]

Second-order piece of Eyina = Mponai —m — Mpy

0.00

_ - First law
-0.01; Second-order

-0.02;

5-0.03]
L [ ® |Esr - Er|
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in Esr °

~0.05/ (sl &

I

|
@)
8,L
0‘)|O
DIE
O 1=
€13
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c1©
c

|
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/
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/
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Calculations performed as of 2005

Adiabatic | 1st order

2nd order

Schwarz.

circular

v

generic

v
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generic
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holy grail
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Calculations performed as of 2019

Adiabatic | 1st order | 2nd order

circular \/ \/ \/

Schwarz.

generic

v v
circular \/ \/
v v

generic holy grail
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Conclusion

Challenge

® accurate (post-adiabatic) model requires second-order self-force
calculations for generic bound orbits in Kerr

Prospects

® adiabatic inspirals should suffice for signal detection in most cases.
Templates are on the way.

® post-adiabatic inspirals should enable high-precision parameter
estimation. Lots of work to do.

For more information, see recent review by Barack and Pound
(arXiv:1805.10385)
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Equation of motion

Solving EFE in buffer region yields equations of motion for object’s effective
center of mass

1st order, arbitrary compact object [MiSaTaQuWa 1996]:

D‘l ~ I L . -
2 L 8\(op R R1 N\ .3,y o 1 pa BGYS 1 (Y2
dr? 2\ uu®)(2h = hgs) uPu? + gn R gasul ST+ O(m?)

I

(motion of spinning test body in g,,, + hy}})
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Equation of motion

Solving EFE in buffer region yields equations of motion for object’s effective
center of mass

2nd-order, nonspinning, spherical compact object [Pound 2012]:

D?zV . ~y . SR
= — 2 (¢" + u'u”) (9.” /ij”) (2]1.“ RS Y uut + O(m?)

PTA ‘aAip

dr?

(geodesic motion in g, + h)},)
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