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@ Qutline of the framework
@ Non-local observables
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Algebraic QFT and its generalizations

\O |

-7 quantum field theory

@ A convenient framework to investigate conceptual problems in
QFT is the Algebraic Quantum Field Theory.
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Algebraic QFT and its generalizations

\O |

7 quantum field theory

@ A convenient framework to investigate conceptual problems in
QFT is the Algebraic Quantum Field Theory.

o [t started as the axiomatic framework of Haag-Kastler: a model
is defined by associating to each region O of Minkowski
spacetime the algebra 21(Q) of observables (a unital C"-algebra)

that can be measured in O.
)
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Algebraic QFT and its generalizations
PAQHI

quantum field theory

@ A convenient framework to investigate conceptual problems in
QFT is the Algebraic Quantum Field Theory.

o [t started as the axiomatic framework of Haag-Kastler: a model
is defined by associating to each region O of Minkowski
spacetime the algebra 1() of observables (a unital C"-algebra)
that can be measured in O.

o The physical notion of subsystems is realized by the condition of

isotony, i.e.: O C Oy = A(O;) C A(O,). We obtain a net of

C"*-algebras. B _

A(O2)

J
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Algebraic QFT and its generalizations
QI

 quantum field theory

A convenient framework to investigate conceptual problems in
QFT is the Algebraic Quantum Field Theory.

[t started as the axiomatic framework of Haag-Kastler: a model
is defined by associating to each region O of Minkowski
spacetime the algebra 21(QO) of observables (a unital C"-algebra)
that can be measured in O.

The physical notion of subsystems is realized by the condition of

isotony, i.e.. O C Oy = A(O;) C A(O,). We obtain a net of
C"-algebras.

Key idea: algebras of observbles constructed independently of
the choice of state (“vacuum™), so allows for degenerate vacuua.
This idea can be applied more generally, as we will see later.
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Algebraic QFT and its generalizations

\QF1

ariant quantum field theory

@ To include the effects of general relativity
one has to be able to describe quantum fields
on a general class of spacetimes. The
corresponding extension of AQFT is called
locally covariant quantum field theory

(LCQFT).
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Algebraic QFT and its generalizations

variant quantum field theory

@ To include the effects of general relativity
one has to be able to describe quantum fields
on a general class of spacetimes. The
corresponding extension of AQFT is called
locally covariant quantum field theory

(LCQFT).

o We replace O and O, with smooth
Lorentzian manifolds (spacetimes) M, N and
require the embedding ¢» : M — N to be an

isometry, preserving other structure.
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Algebraic QFT and its generalizations

wariant quantum field theory

@ To include the effects of general relativity
one has to be able to describe quantum fields 2
on a general class of spacetimes. The
corresponding extension of AQFT is called
locally covariant quantum field theory

(LCQFT).

o We replace O and O, with smooth
Lorentzian manifolds (spacetimes) M, N and
require the embedding ¢» : M — N to be an
isometry, preserving other structure.

2

o A model in LCQFT is defined by assigning
observable algebras (M) to spacetimes and
algebra morphisms 20/ to embeddings.
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Algebraic QFT and its generalizations

\() ||

variant quantum field theory

@ To include the effects of general relativity
one has to be able to describe quantum fields )
on a general class of spacetimes. The
corresponding extension of AQFT is called
locally covariant quantum field theory

(LCQFT).

o We replace O and O, with smooth
Lorentzian manifolds (spacetimes) M, N and
require the embedding v : M — N to be an
isometry, preserving other structure.

.|

o A model in LCQFT is defined by assigning
observable algebras (M) to spacetimes and
algebra morphisms 2(¢) to embeddings.

o Covariance requirement: 2l is a functor.
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Algebraic QFT and its generalizations

e AQFT

o Building models in AQFT is hard and up to
now no 4D interacting model fulfilling the
axioms is known. To describe theories like

QED or the Standard Model of particle

physics we use perturbative methods.
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Algebraic QFT and its generalizations

ve AQFT

o Building models in AQFT is hard and up to
now no 4D interacting model fulfilling the
axioms is known. To describe theories like
QED or the Standard Model of particle
physics we use perturbative methods.

o pAQFT combines the axiomatic framework
of Haag-Kastler with formal deformation
quantization and homological algebra.
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Algebraic QFT and its generalizations
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e AQFT

@ Building models in AQFT is hard and up to
now no 4D interacting model fulfilling the
axioms is known. To describe theories like
QED or the Standard Model of particle
physics we use perturbative methods.

o pAQFT combines the axiomatic framework
of Haag-Kastler with formal deformation
quantization and homological algebra.

o Contributors: Bahns, Brunetti, Duetsch,
Fredenhagen, Hawkins, Hollands,
Pinamonti, KR, Wald, ....
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Algebraic QFT and its generalizations

'B1N|
Al |

e AQFT

Building models in AQFT is hard and up to
now no 4D interacting model fulfilling the
axioms is known. To describe theories like
QED or the Standard Model of particle
physics we use perturbative methods.

Matsematicnl g sics Studies

Kasia Rejzner

I Perturbative

o pAQFT combines the axiomatic framework

of Haag-Kastler with formal deformation Al%Ebrai(
quantization and homological algebra. Qua ntum F|E|d
o Contributors: Bahns, Brunetti, Duetsch, " Theory
Fredenhagen, Hawkins, Hollands, An Introduction for Mathematicians
Pinamonti, KR, Wald, .. ..
o Mathematical foundations of pAQFT have € Springer

been reviewed in: pAQFT. An Introduction
for Mathematicians, KR, Springer 2016.
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@ Qutline of the framework
@ Non-local observables
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o A globally hyperbolic spacetime (M, g).
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@ A globally hyperbolic spacetime (M, g).
o Configuration space £ (M ): choice of objects we want to study in
our theory (scalars, vectors, tensors,. . .).
o Typically £(M) is a space of smooth sections of some vector
w

bundle £ — M over M. @
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o A globally hyperbolic spacetime (M, g).
o Configuration space £ (M ): choice of objects we want to study in
our theory (scalars, vectors, tensors,. . .).
o Typically £(M) is a space of smooth sections of some vector
bundle E *» M over M.
o For the scalar field: £E(M) = C> (M, R).
o For Yang-Mills with trivial bundle: £(M) = Q' (M, ), where € is
a Lie algebra of a compact Lie group.

O
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o A globally hyperbolic spacetime (M, g).
o Configuration space £ (M ): choice of objects we want to study in
our theory (scalars, vectors, tensors,. . . ).
o Typically £(M) is a space of smooth sections of some vector
bundle E -+ M over M.
o For the scalar field: £E(M) = C>™ (M, R).
o For Yang-Mills with trivial bundle: £(M) = Q' (M, ), where € is
a Lie algebra of a compact Lie group.
o For effective QG: E(M) = I'((T*M)“?).

o We use notation ¢ € £(M), also if it has several components.

O
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o A globally hyperbolic spacetime (M, g).

o Configuration space £ (M ): choice of objects we want to study in
our theory (scalars, vectors, tensors,. . . ).
o Typically £(M) is a space of smooth sections of some vector
bundle E *» M over M.
o For the scalar field: £E(M) = C> (M, R).
o For Yang-Mills with trivial bundle: £(M) = Q' (M, ), where € is
a Lie algebra of a compact Lie group.

o For effective QG: E(M) = I'((T*M)™?).

o We use notation ¢ € £(M), also if it has several components.

O

@ Dynamics: we use a modification of the Lagrangian formalism
(fully covariant).
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observables

o Classical observables are modeled as smooth functionals on
E(M), i.e. elements of C ™ (£(M), C). For simplicity of notation
(and because of functoriality), we drop M, if no confusion arises,
i.e. write £, C™ (&, C), etc.
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observables

o Classical observables are modeled as smooth functionals on
E(M), i.e. elements of C ™ (£(M), C). For simplicity of notation
(and because of functoriality), we drop M, if no confusion arises,
i.e. write £, C™ (&, C), etc.
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observables

o Classical observables are modeled as smooth functionals on
E(M), i.e. elements of C ™ (£(M), C). For simplicity of notation
(and because of functoriality), we drop M, if no confusion arises,
i.e. write £, C™ (&, C), etc.

o Localization of functionals governed by their spacetime support:

supp F = {x € M|V neighbourhoods U of x 3p, ) € &,
supp ¢ C U such that F(p + 1) # F(p)} .
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pAQFT

observables

o Classical observables are modeled as smooth functionals on
E(M), i.e. elements of C ™ (£(M), C). For simplicity of notation
(and because of functoriality), we drop M, if no confusion arises,
i.e. write £, C™ (&, C), etc.

o Localization of functionals governed by their spacetime support:

supp F = {x € M|V neighbourhoods U of x ¢y, € &,
supp ¢ C U such that F(p + 1) # F(p)} .

The main message of this talk: .

pAQFT is a machinery to turn functionals of classical field
configurations (classical observables) into quantum observables. This
is done without referring to a Hilbert space representation and works
for a large class of (potentially non-local) functionals.
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o We define F, local functionals on &, as functionals that satisfy:

Flor+ 2+ ¢3) = Flo1 + 92) + Flo2 + ¢3) — Flp2),

if suppyp N suppes = <.
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o We define F, local functionals on &, as functionals that satisfy:

Flor+ 2+ ¢3) = Flor + 92) + Flo2 + ¢3) — Flp2),

if suppyp N suppes = <.

@ We have shown (Functionals and their derivatives in quantum
field theory, C. Brouder, N.V. Dang, C. Laurent-Gengoux, KR,
JMP 2017) that this is equivalent to saying that F is of the form

F@) = [ 16 ).

for a smooth, compactly supported, function f on the jet bundle.
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inctionals

o A functional F is regular, if FU")(1p) is a smooth section (in
general it would be distributional). It is called polynomial if
there exists N € N such that F¥) = 0 for all k > N
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inctionals

o A functional F is regular, if FU")(1p) is a smooth section (in
general it would be distributional). It is called polynomial if
there exists N € N such that F¥) = 0 for all k > N

@ Let F denote the space of regular, polynomial, compactly
supported functionals.
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A functional F is regular, if FU") (o) is a smooth section (in
general it would be distributional). It is called polynomial if
there exists N € N such that F¥) = 0 for all k > N

@ Let F denote the space of regular, polynomial, compactly
supported functionals.

@ Note that regular, polynomial functionals of degree 2 and higher
. I
are not local. Take for example

F(p) /f X, V)e(x)e(W)du(x)du(y) , feDM?).

o Now take f € D(M) and consider

Py = [ 16 d,,_/ F)0(x — V) () () (Odp(y).
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pPAQFT

nctionals

A functional F is regular, if FU") (o) is a smooth section (in
general it would be distributional). It is called polynomial if
there exists N € N such that F¥) = 0 for all k > N

Let F denote the space of regular, polynomial, compactly
supported functionals.

Note that regular, polynomial functionals of degree 2 and higher
are not local. Take for example

—

F(p) /f X, V)e(x)e()du(x)du(y) , feDM?).

Now take / € D(M) and consider
F@) = [Fédn = [ 1006 - eptdn(d().

To avoid technical analytic issues, 1 will formulate the rest of this
introduction for F. However, all of this generalizes to Fj..
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@ Dynamics is introduced by a generalized Lagrangian §, a
localization preserving map S : D — Fjoc, Where
D(M) = Cy° (M, R). Examples:
_ o
e, 1 .2 7L y
o S(f)le] = / (3'@ | ;Vmi’v“wi’)fdﬂ-s
JM “~
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@ Dynamics is introduced by a generalized Lagrangian §, a
localization preserving map S : D — Fjoc, Where
D(M) = Cy° (M, R). Examples:

/o~ 2 l t y
o S(f)le] = /H,(%@‘ | Evu'@vl ‘fj)fd“‘
| g
o S(f)[A] = —5 [ fu(F A*F), F being field strength for A,
." JM
o Sl = | Rlgls di ’
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G

@ Dynamics is introduced by a generalized Lagrangian §, a
localization preserving map S : D — Fjoc, Where
D(M) = Cy° (M, R). Examples:
_ o]
N, 1 .2 7L y
o S(fle] = /(3@ | ;Vmi’v“wi’).fdﬂ-s
JM

| W |
o S(HA] = —5 / fu(F A xF), Fbeing field strength for A,
= JM

o SNl = | Rlglf d °

o The Euler-Lagrange derivative of § is denoted by dS and defined
hy(dS@ﬂ.w)—-<SU)”)
Y € D(M).

@], z> where f = 1 on suppi),

N
,.

=1
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@ Dynamics is introduced by a generalized Lagrangian §, a

localization preserving map S : D — Fjoc, Where
D(M) = Cy° (M, R). Examples:

g o, N,
°SUHﬂ/($¢‘I;V%¢V‘Qﬁmu
JM

| W |
o S(HA] = —5 / fu(F A xF), Fbeing field strength for A,
= JM

o SNl = | Rlglf d °
The Euler-Lagrange derivative of § is denoted by @S and defined

hy(dS@ﬂ.w)—-<SU)”)
Y € D(M).

The field equation is: dS(p) = 0,

so geometrically, the solution space is
the zero locus of dS (seen as a 1-form
on &).

@], z> where f = | on supp),

N

=1
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o We use the BV framework, where symmetries are identified with
vector fields (directions) on &.
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o We use the BV framework, where symmetries are identified with
vector fields (directions) on &.

o Let V denote regular, polynomial compactly supported vector

fields on &.
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o We use the BV framework, where symmetries are identified with
vector fields (directions) on &.

o Let V denote regular, polynomial compactly supported vector
fields on &.

o They act on F as derivations: dyF(p) := (F'U (&), X(p))
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We use the BV framework, where symmetries are identified with
vector fields (directions) on £.

Let VV denote regular, polynomial compactly supported vector
fields on &.

They act on F as derivations: OyF(p) := (F'" (), X(p))

A symmetry of S is a direction in &€ in which the action is
constant, i.e. it is a vector field X € V such that Vy € &:

0 = (dS(p), X(¥))=: ds(X) ().

Kasia Rejzner

Page 43/87



lar field (classical)

o & =C™(M,R) and the equation of motion is dS(¢) = Py = 0,
, )
where P = — (0O + m”~).
@ Space of solutions: £ C £. Denote functionals that vanish on &g
by Fi. Assume that they are of the form: dg(X) for some X € ).
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pAQFT

field (classical)

& = C™(M,R) and the equation of motion is dS(p) = Py = 0,
where P = —(O + m?).

@ Space of solutions: £ C &. Denote functionals that vanish on &g
by Fi. Assume that they are of the form: dg(X) for some X € V.

@ The space of on-shell observables (i.e. functionals on &) Fy is
the quotient Fg = F/Fy.

o 0 is called the Koszul differential. Symmetries constitute its
kernel.
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pAQFT

field (classical)

E =C™(M,R) and the equation of motion is dS(¢) = Py = 0,
where P = —(O + m?).

@ Space of solutions: £ C &. Denote functionals that vanish on &g
by Fi. Assume that they are of the form: dg(X) for some X € V.

@ The space of on-shell observables (i.e. functionals on &£s) Fy is
the quotient Fg = F/Fy.

o g is called the Koszul differential. Symmetries constitute its
kernel.

(

. - 3 )
o We obtain a sequence: 0 — Sym <+ V — F — 0.
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pAQFT

ar field (classical)

E = C™(M,R) and the equation of motion is dS(¢) = Py = 0,
where P = —(0O 4 m?).

Space of solutions: £¢ C €. Denote functionals that vanish on &g
by Fi. Assume that they are of the form: d5(X) for some X € V.
The space of on-shell observables (i.e. functionals on Eg) Fy is
the quotient Fg = F/Fy.

0s is called the Koszul differential. Symmetries constitute its
kernel.

We obtain a sequence: 0 — Sym < V B F 0.

For the beginning we consider the case where there are no
non-trivial (not vanishing on &£s) local symmetries,

In this case: BY = (AV, dg). Then the space of classical on-shell
observables is given by Fg = Hy(BV) and higher cohomology
groups vanish.
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For M globally hyperbolic, P possesses
unique retarded and advanced Green’s
functions AR, A*,

. R/r
o Their difference is the Pauli-Jordan function supp A™(f)
A= AR — AA
@ The Poisson bracket (Peierls bracket) of the ;
o ( ) Supp f
free theory is
col = L) A _
’[’.(J‘ = </* .A(J > s SUppAA(f)
for F, G local functions on £(M).
o This structure extends to BY and we obtain (BV(M). |.,.|) as

the dg classical filed theory model on M. The on-shell classical
theory is obtained as (Hyo(BV(M)), |.,.], "), where - is the
pointwise product of functionals.
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pAQFT

field quantization

o We define a x-product (deformation quantization of the classical
Poisson algebra):

| B DU
(FxG)(@) = 3 = (F" (), (A1)*"G" () |
n=0 "

where Ay = A + H is of positive type and H is symmetric.

Different choices of H correspond to different normal ordering.
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pAQFT

field quantization

o We define a x-product (deformation quantization of the classical
Poisson algebra):

' N[ A) — B (M) (AN (/ “nges(n) (A
(FxG)(¢) = ”Z_% o <F (¥), (A4)™"G (w)> ,
where A, = %A + H is of positive type and H is symmetric.

Different choices of H correspond to different normal ordering.
o The free dg QFT model on M is (BY(M)[[h]], %, *), where * is
the complex conjugation.
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pAQFT

field quantization

We define a x-product (deformation quantization of the classical
Poisson algebra):

(FxG)(p) = Z 2 <F(” (¢), (A1) ~,:(_}“”(sw)> ,

n!
n=>0

where A, = %A + H is of positive type and H is symmetric.
Different choices of H correspond to different normal ordering.
o The free dg QFT model on M is (BV(M)|[h]], . *), where * is
the complex conjugation.
@ The time-ordering operator 7 is defined as:

a0

TF(e) = Y (F(p). (AN

n=I()

‘ [
where A" = ;(A’a‘ +AR) + H.
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pAQFT

field quantization

o We define a x-product (deformation quantization of the classical
Poisson algebra):

' N[ A — B (M) (AN (/ “nges(n) (A
(FxG)(¢) = ”Z_% o <F (¥), (A4)™"G (w)> ,
where A, = %A + H is of positive type and H is symmetric.

Different choices of H correspond to different normal ordering.
o The free dg QFT model on M is (BY(M)[[h]], %, *), where * is
the complex conjugation.
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pAQFT

field quantization

We define a x-product (deformation quantization of the classical
Poisson algebra):

00 hh

n=0
where Ay = A + H is of positive type and H is symmetric.
Different choices of H correspond to different normal ordering.
o The free dg QFT model on M is (BYV(M)[[h]], %, *), where * is
the complex conjugation.
@ The time-ordering operator 7 is defined as:
~
TF() = 3 (Fe).(a5™)

n=»0

where A" = %(A’L\ + AR+ H.
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pAQFT

o regular observables

o Formally T corresponds to the operator of convolution with the
oscillating Gaussian measure “with covariance ihAF,

TF) " [ P =) dunsr(9).
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pAQFT

o regular observables

o Formally T corresponds to the operator of convolution with the
oscillating Gaussian measure “with covariance ihAF,

TF) " [P0 =) dunsr(0).

o Define the time-ordered product -7 on F|[h]] by:
FrG=T(T 'F-T'G)
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pAQFT

'g regular observables

Formally 7 corresponds to the operator of convolution with the
oscillating Gaussian measure “with covariance ihAF”,

TF(p) formal / F(p —@)duar(@) .

o Define the time-ordered product -7 on F|[h]] by:
FrG=T(T 'F-T'G)

@ Interaction is a functional V € F. Using the commutative
product -7 we define the S-matrix:
I . iV — TV
b(V) — (?f'! /h _ T((‘.’T !'r/h) '

o Interacting fields are defined by the formula of Bogoliubov:

R\(F) - (é’f-;:;/h)*_] * (ej]r'-,_.-f/h . F)
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PAQFT

7 regular observables

Formally 7 corresponds to the operator of convolution with the
oscillating Gaussian measure “with covariance ihAF”,

- formal [ ., ;
TF(p) = /F(c,;? — @) dpar (@) .
o Define the time-ordered product -7 on F|[h]] by:
F-rG=T(T 'F-T'G)
o Interaction is a functional V € F. Using the commutative
product -7 we define the S-matrix:

Sy = el =TT Wy,

o Interacting fields are defined by the formula of Bogoliubov:
- o iV /hNk—1  , 0V/D
@ We define the interacting star product as:

Fxim G = Ry, (Ry(F) * Ry(G)) |
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it results on convergence

Theorem (Hawkins, KR 2016)

(=) +d() pet N
F*HU (’ Z \Aut 7‘ ‘}(F.(I),

the sum runs over certain class of graphs. Here d(v) denotes the

number of directed edges and v defines an n-ary multidifferential
operator. Importantly, this is a finite sum at each order in h.
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T pAQFT
the Costello-Gwilliam approach (free theory)

o Comparing nets and factorization algebras of observables: the

free scalar field, O. Gwilliam, KR, CMP 2020.
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i ‘7‘1. | :_:\"i-

to the Costello-Gwilliam approach (free theory)

o Comparing nets and factorization algebras of observables: the

free scalar field, O. Gwilliam, KR, CMP 2020).

o In the free theory we have (AV[[h]], *, -7, ds) and
Hy(AV[[h]], ds) gives the classical observables.

o Using 7' we can map (AV[[h]], -7, bs) ﬁl\ (AV[[A]], -, 50),
where §) = 7 ' o g o T is the quantum BV operator, which can
also be written as

.;{() = { \S} — ihA\

where A is the BV Laplacian (divergence on V, extended to AV
with appropriate signs) and {., .} is the Schouten bracket (shifted
Poisson bracket on AV generalizing the commutator on }).
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pAQFT

On'0 the Costello-Gwilliam approach (summary)

Bottom line:

In pAQFT we deform the product, while in CG approach one deforms
the differential. Both viewpoints are shown to be equivalent, using the
maps:
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pAQFT

On'0 the Costello-Gwilliam approach (summary)

Bottom line:

In pAQFT we deform the product, while in CG approach one deforms
the differential. Both viewpoints are shown to be equivalent, using the
maps:

@ T in the free case.
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eories and gravity

@ Gauge theories: the action is invariant under some infinite
dimensional Lie group G and the theory possesses local
symmetries. In such case & has to be replaced by the space of
orbits of G.
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pAQFT

ories and gravity

@ Gauge theories: the action is invariant under some infinite
dimensional Lie group G and the theory possesses local
symmetries. In such case & has to be replaced by the space of
orbits of G.

@ Since the global structure of this space could be very
complicated, we work with the derived version of this space and
consider the Chevalley-Eilenberg complex associated with the
Lie algebra action of g = Lie(G).

o Effectively, one replaces £ with a graded infinite dimensional

manifold & = &£ @ g[1].
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o Treatment of gauge theories using the BV formalism:
Batalin-Vilkovisky formalism in perturbative algebraic quantum
field theory, K. Fredenhagen, KR, CMP 2013.

@ Application of the pAQFT framework to perturbative quantum
gravity: Quantum gravity from the point of view of locally
covariant quantum field theory, R. Brunetti, K. Fredenhagen,
KR, CMP 2016.

@ Application to quantum cosmology has been outlined in
Cosmological perturbation theory and quantum gravity,
R. Brunetti, K. Fredenhagen, T.-P. Hack, B. Pinamonti, KR,
JHEP 2016.
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pAQFT

hism invariant observables

@ In classical theory we have the metric g on a manifold M and
observables are (smooth) functionals of the metric.
o Locality requirement for functionals F(g) is in conflict with

diffeomorphism invariance (at least for non-compact M). Main
proposals for non-local diff invariant observables:
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pAQFT

al observables I

@ Consider four scalars X i,'. (= 0,...,3 which will parametrize
points of spacetime. The fields X}’ should transform under
diffeomorphisms y as

X\, =X/ ox,

X'y
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pAQFT

al observables I

o Consider four scalars X i,'. (= 0,...,3 which will parametrize
points of spacetime. The fields X}’ should transform under
diffeomorphisms y as

oyt A
X.\*.&’ o X\u °X
@ One can think of the choice of X" as the choice of observer (cf.
Freidel).
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pAQFT

al observables I

@ Consider four scalars X i,'. (= 0,...,3 which will parametrize
points of spacetime. The fields X}’ should transform under
diffeomorphisms y as

X\, =X/ ox,

X'y

Freidel).
o Fix a background g( such that the map

Xy ox = (X0 X3

is injective.
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pAQFT

al observables II

o Take g = gy + h sufficiently near to gy and set

o =l
(}.‘gl D— X": o X‘Q[] .
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pAQFT

al observables II

o Take g = gy + h sufficiently near to gy and set

oyl

(}.lgl — X": O X‘Q[] .
@ v, transforms under formal diffeomorphisms as

Tt P

Qy*g = X .
o Take another local field A, (x) (e.g. a metric scalar). Then
A, =A,0q,

is invariant under diffeos.
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nal observables 111

Physical interpretation

Fields X!’ are configuration-dependent coordinates such that
Ago X, '1(Y) corresponds to the value of the quantity A, provided
that the quantity X, has the value X, =Y.
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nal observables 111

Physical interpretation

Fields X!’ are configuration-dependent coordinates such that
Ago X, '1(Y) corresponds to the value of the quantity A, provided
that the quantity X, has the value X, =Y.

o Thus A, o X, ' is a partial or relational observable (cf. Dittrich,
Rovelli, Thiemann).
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nal observables 111

Physical interpretation

Fields X!’ are configuration-dependent coordinates such that

Ago X, '1(Y) corresponds to the value of the quantity A, provided
that the quantity X, has the value X, =Y.

o Thus A, o X, ' is a partial or relational observable (cf. Dittrich,
Rovelli, Thiemann).

o By considering A, = A, 0 X, ' 0 X, we obtain a functional

’
¢ S0

Fale) = [ Adare) = [ 4,06 01X (),

for a test density f. This functional depends on the choice of
observable A and “observer” X.
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PAQFT

al observables 111

Physical interpretation

Fields X!/ are configuration-dependent coordinates such that

Ago X, '1(Y) corresponds to the value of the quantity A, provided
that the quantity X, has the value X, =Y.

@ Thus A, o X;' is a partial or relational observable (cf. Dittrich,
Rovelli, Thiemann).

o By considering A, = A, 0 X, ' 0 X, we obtain a functional

¥
S0

Fale) = [ Adare) = [ 4,06 I (),

for a test density f. This functional depends on the choice of
observable A and “observer” X.

o If X} and A, are all local fields themselves, then F 4 is non-local
with local derivatives.
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Ip/\()FI.‘
s with boundary and BFV formalism
@ Another way to introduce non-locality is to consider theories

with boundary, using a modification of the BV formalism, called
BFV formalism.

Kasia Rejzner

Pirsa: 20010024 Page 76/87



Ip/\()FI.‘
ith boundary and BFV formalism
o Another way to introduce non-locality is to consider theories

with boundary, using a modification of the BV formalism, called
BFV formalism.,
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o Construct theories with boundary using BFV formalism (with
M. Schiavina, A. Cattaneo).
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@ Construct theories with boundary using BFV formalism (with
M. Schiavina, A. Cattaneo).

o Study integrable models using pAQFT methods and construct
local observables in these models (with D. Bahns,
K. Fredenhagen). Consider dualities between local and non-local
degrees of freedom (some work has already been done for the
sine-Gordon to Thirring model duality).
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@ Construct theories with boundary using BFV formalism (with
M. Schiavina, A. Cattaneo).

o Study integrable models using pAQFT methods and construct
local observables in these models (with D. Bahns,
K. Fredenhagen). Consider dualities between local and non-local
degrees of freedom (some work has already been done for the
sine-Gordon to Thirring model duality).

o Study CETs in the pAQFT framework and compare this with
other approaches (with B. Vicedo and S. Crawford).
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Construct theories with boundary using BFV formalism (with
M. Schiavina, A. Cattaneo).

Study integrable models using pAQFT methods and construct
local observables in these models (with D. Bahns,

K. Fredenhagen). Consider dualities between local and non-local
degrees of freedom (some work has already been done for the
sine-Gordon to Thirring model duality).

Study CETs in the pAQFT framework and compare this with
other approaches (with B. Vicedo and S. Crawford).

Study the interacting star product from the point of view of
geometric quantization and apply this to discrete spacetime
models (with E. Hawkins and C. Minz).
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Construct theories with boundary using BFV formalism (with
M. Schiavina, A. Cattaneo).

Study integrable models using pAQFT methods and construct
local observables in these models (with D. Bahns,

K. Fredenhagen). Consider dualities between local and non-local
degrees of freedom (some work has already been done for the
sine-Gordon to Thirring model duality).

Study CETs in the pAQFT framework and compare this with
other approaches (with B. Vicedo and S. Crawford).

Study the interacting star product from the point of view of
geometric quantization and apply this to discrete spacetime
models (with E. Hawkins and C. Minz).

Use Borel summability and resurgence techniques to push the
convergence results further an go “beyond perturbation theory™
(with P. Clavier).
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pAQFT

Thank you very much for your attention!
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alizations
pAQFT

on to the Costello-Gwilliam approach (interacting)

o In the interacting theory, with interaction V, we have
(AV[[A]], %in/) as a further deformation of (AV|[[A]], %) by means
of R\

o Define the interacting BV differential by sy = R\T] o0dg 0o Ry. So

we obtain: (AV([[A]], *, ds) £> (AVI[[A]], *ins, Sv)
o Assume the following: 6(S(V)) = 0. This can be also written as
L{S + V., 54V} —ihA(S+V)=0andis called quantum
master equation (QME).
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ith boundary and BFV formalism

Another way to introduce non-locality is to consider theories
with boundary, using a modification of the BV formalism, called
BFV formalism.

In this framework, one associates observables to the bulk, to the
boundary and possibly to corners (depending on the dimension).
We can also consider a situation, where the boundary is added at
infinity, so we have the bulk observables and the asymptotic
observables.

Quantizing asymptotic observables in quantum gravity and QED
goes under the name of asymptotic quantization (going back to
Ashtekar) and has been used by Herdegen (Asymprtotic algebra

for charged particles and radiation, JMP 96) to address the

infrared problem in QED.
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