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Abstract: Subregion duality is an idea in holography which states that every subregion of the boundary theory has a corresponding subregion in the
bulk theory, called the 'entanglement wedge', to which it is dual. In the classical limit of the gravity theory, we expect the fields in the entanglement
wedge to permit a Hamiltonian description involving a phase space and Poisson brackets. In this talk, | will describe how this phase space arises
from the point of view of the boundary theory. In particular, I will explain how it emerges from measurements of a certain quantum
information-theoretic quantity known as the ‘Uhlmann phase, in the boundary subregion.
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Holography

Setting of the talk:

“bulk” “boundary”
(d 4 1)-dimensional d-dimensional
theory with gravity dual theory without gravity
asymptotically AdS CFT
M lives on O M
l\ /j
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Holography

Loosely speaking, there are two main avenues of research in
holography:

gravity , QFT _
1. Translate hard { QFT } question - easy {gravity question.

® This translation uses the "holographic dictionary’ - the
collection of 1-to-1 maps between concepts in the two theories.

2. Write new entries in the dictionary.
® Deepens our understanding of holography.

* Widens scope for potential applications.
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Holographic subregion duality

A particular section of the dictionary has emerged in the last few
years which relates locality in the two theories.

If A is a subregion of the boundary CFT, then I some subregion of
the bulk which is dual to A.

Any question we could ask about A can be rephrased as a question
about its dual subregion, and vice versa.
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Holographic subregion duality

The dual subregion is the ‘entanglement
wedge’,

A: partial Cauchy surface on the boundary.

T: extremal area surface in the bulk
homologous to A.

Y. surface interpolating between A and Y.

Entanglement wedge: domain of dependence
of X.
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Holographic subregion duality

Area of T gives leading order entanglement entropy [Ryu-Takayanagi
(2006), Hubeney-Rangamani-Takayanagi (2007)].

Quantum corrections to this come from bulk fluctuations on ¥
[Faulkner-Lewkowycz-Maldacena (2013)].

The boundary state in A is dual to the bulk state in the
entanglement wedge [Jafferis-Lewkowycz-Maldacena-Suh (2015)].

Any bulk operator O,k acting on fields in entanglement wedge can
be reconstructed as boundary operator O, acting in A
[Dong-Harlow-Wall (2016)].

There are many other developments in subregion duality supporting
these ideas.

6/52
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In this talk, | give an argument for a new entry in the subregion
duality section of the holographic dictionary.

In the classical limit of bulk gravity theory (N — 00) we should get
a phase space -+ Poisson brackets. Mathematically: a symplectic

manifold.
Manifold P. Each x € P is a classical
- configuration.
Symplectic form §2: closed and
non-degenerate 2-form.
P,

= Zd(ﬁ A dp;

1

(2 gives Poisson brackets.
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Covariant phase space

Theory of fields ¢ described by action S = [ L

¢).

A linear variation of the fields gives
SL|p| = Ll + d¢p| — Ligp| = Elp| - d¢p + d(@|ep, d]) .

Phase space P is space of solutions to E[¢| = 0.

Pick a Cauchy surface ¥. Define

(—)lq‘)‘ rSr;‘)I — / 74 |(f:, A
>

d¢h is a vectoron P == © is a 1-form on P.

Define €2 as exterior derivative of ©. () is symplectic form.
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Consider the case of a field theory on an asymptotically AdS
spacetime, holographically dual to a CFT.

Then: the symplectic form {2 of the covariant phase space is dual to
the Berry curvature of the boundary Hilbert space
|Belin-Lewkowycz-Sarosi (2018)].
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Berry curvature

H 1))

1)

al .
‘.n'-’n) l”“u » 0O
— 3

|110)
[V8) |ahg)

Hilbert space H. Consider a closed curve (' : S' — H of normalised
states. Choose states ordered along (.

Transition amplitude:

('Qf"l|¢l’n> (HI’IIIUI'J!—l) v <d’15|'¢"2> (U"‘Jlﬁ’l) 4 OXD(}-’}')
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Berry curvature

Berry phase:

" . ] .
vy = ,/c (P(3)] ((l.q [P(8)) ds = ./('”"

i) is the Berry connection.

where a = 1 (y|d

The curvature of this connection
f=da=1id | Ad|y)

is the Berry curvature.
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This talk: a generalisation of this result to subregions.
Let 3 be a Cauchy surface for the entanglement wedge.

Covariant phase space formalism gives a symplectic form for the
entanglement wedge.

| will show how to recover this symplectic form by measuring
Uhlmann phase in A.

Uhlmann phase: a generalisation of Berry phase to mixed states.
Necessary because state in A is always mixed due to entanglement.
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Plan

® What is Uhlmann phase?
® Uhlmann holonomy, fidelity
® Uhlmann's theorem

® Uhlmann holonomy in holographic theories
* Replica trick

®* Holographic Uhlmann phase < the symplectic form
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Plan

® What is Uhlmann phase?
® Uhlmann holonomy, fidelity
® Uhlmann's theorem
® Uhlmann holonomy in holographic theories
* Replica trick
®* Holographic Uhlmann phase < the symplectic form

* Comments and future directions
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Purifications

Density matrix p: H — H.

A purification of p is a state 1)) € H @ H' obeying

/ | |
p=tr'|y) (Y.
H’ is any auxiliary Hilbert space.

There are many possible purifications for a given p.
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Parallel purifications

We measure a system to be initially p;, and then subsequently p».

We assume py, po : H — H arise as reduced density matrices of

[11) , |12) € H@H'.

Transition probability:

9

(2 |41)|°

UhImann's idea: assume this probability is maximised. In a classical
regime, this is a good approximation.

Purifications that maximise the transition probability are called
‘parallel’,
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Parallel purifications

Theorem (Uhlmann, 1976)
Purifications |1) , |12) of py, p2 are parallel if and only if

tr(/Vripa/pr ) = Walin)]

(For © > 0, VO is defined spectrally, i.e. if O has eigenstate |a)
with eigenvalue a, then VO |a) = a |a).)

tt'(\/\/[)l[)-‘g \//)1) is called the ‘fidelity’.
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Parallel purifications

Parallel purifications are not unique:

If [¢1),

o) are parallel purifications of py, p2, then so are
eN(I@U) ), e(I®U)|ys),

where fi, fo € R, and UTU = 1.
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Parallel lift

) ya)

2y Ps  p .
D 2 |'l,u'l-’l )

1

I”I"5> Pn .
Mn |'.""l“) Iilll,,ﬂ.‘_\‘
—
1) P8
)7
K ""7)’ | e
' /
P8 po |110)

|f€l‘."H> | "J“U)

Consider a closed curve C' of density matrices. Choose density
matrices p; ordered along curve.

For each p;, pick a purification [1;) such that |(1)i4[¢;)]* is
maximal.
As n — 00, the states [1);) converge to a curve C'in H.
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Parallel lift

) ya)

2y Ps  p .
D 2 |'l,u'l-’l )

1

I”I"5> Pn .
Mn |'.""l“) Iilll,,ﬂ.‘_\‘
—
1) P8
)7
K ""7)’ | e
' /
P8 po |110)

|f€l‘."H> | "J“U)

Consider a closed curve C' of density matrices. Choose density
matrices p; ordered along curve.

For each p;, pick a purification [1;) such that |(1)i4[¢;)]* is
maximal.
As n - 00, the states [1);) converge to a curve C' in H.

C is a 'parallel lift’ of C. Not unique. 20 /52
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Uhlmann holonomy

p(s) [1(5))

C
(' is closed, but (' doesn't need to be.
(1)) = (I @ X)[p(0)), X'X =1

Can think of this construction as a function mapping closed curves
C' to the unitary operator X .

This is an example of holonomy/parallel transport.
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Uhlmann phase

Suppose a curve C : s+ p(s) has parallel lift C : s > |1(s)).
Consider Berry phase along C"

<‘~'f!"l |‘rﬂ‘n> <'_a’a'n |'ﬁ‘i"t1 l> ‘o (*'f‘i'."l

1) — exp(ivy)

Pa) (Yo

RHS does not depend on the choice of parallel lift.

v is the ‘Uhlmann phase’ of (. For a curve of pure states

(s)) (P(s)],

p(s) =

it reduces to Berry phase.

N
N
T
o
N
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Holographic Uhlmann holonomy
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Uhlmann phase

Suppose a curve C : s+ p(s) has parallel lift C : s > |1(s)).
Consider Berry phase along C"

<‘~'f!"l |‘rﬂ"n> ('_«’a'n |Uir'n l> ‘o <*'f“'.'i

o) (V2|thr) — exp(iv)

RHS does not depend on the choice of parallel lift.

v is the ‘Uhlmann phase’ of (. For a curve of pure states

p(s) = |1h(s)) (h(s)],

it reduces to Berry phase.

N
N
T
N
N
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Holographic states

A)
Euclidean path integral on half-sphere gives CFT vacuum |0).

|A) = ’I'v.\'p( / dr d? 'z \(r,z) - O(r, :)) 10) .
r<_0

A sources operators (.

Dual states obtained by time reflection and complex conjugation:

(A

=(0|T oxp( / dr d? 1z \* (-7, 2) - C)t(-z,.f_")).
Jr>0
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Holographic states

To get inner product:

L
i
(/\2‘ /\1)

25 /52
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Holographic states

To get inner product:

(A2|A1)
In a large N limit, the holographic dictionary =—%
(A2l M) = €5,

where S|¢| is the bulk action for the on-shell bulk field configuration
¢ matching the boundary conditions set by A, \{"
25 /52
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Subregion state

Decompose boundary Hilbert space as H = H @ H ;. State in A
for sources A:

/J(/\) — ‘Il

26 /52

Pirsa: 19120055 Page 30/80



Fidelity from a replica trick

Consider two such states p; = p(Ay), p2 = p(A2).

Define for any k£ € C the ‘replicated fidelity’

Fy = tr((\/mm \/m)"'),

Normal fidelity is F'1 = t.r(\/\/mp-_; \/;Tl)

27 /52
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Fidelity from a replica trick

Can compute

M'((‘[)”)g\)k) =tr (p| P2P1P2 -« P1P2 )

Y

2k

with a path integral.
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Fidelity from a replica trick

Carlson’s theorem == F}. uniquely determined in the range
Rek > ..l,l by the values it takes on the positive integers k ¢ Z,..

Strategy to find fidelity: compute Fj, for k € Z,, and then
analytically continue back to k = i This is a form of replica trick.

k € Z, is easier to compute than other values of k, because

F, = t,r(('\/plpg\/p]')k) = Ll‘(('plpg)k)

has no square roots.
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Fidelity from a replica trick

Can compute

t;l‘((‘plpg.)k) =tr (/)| P2P1P2 -« P1P2 ) k
with a path integral.
ke
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Fidelity from a replica trick

Can compute

t;l'((‘/)l[)g.)k) =tr (/)| P2P1P2 -« P1P2 )

Y

2k

with a path integral.

Composition of density matrices =
gluing each spacetime to the next.

Taking the trace ~ gluing the last
spacetime to the first.

Yy

/)I Al Pt ,1
.,\1

P2 X Kk
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Fidelity from a replica trick

tr (;)1[)2[}1 2201 /)2)
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Fidelity from a replica trick

At large N: this manifold gives the boundary conditions for a bulk
on-shell action.

32/52
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Fidelity from a replica trick

At large N: this manifold gives the boundary conditions for a bulk
on-shell action.

T

Symmetries: T, Zj
When A\ = \o: T, Zok

32 /52
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Fidelity from a replica trick

At large N: this manifold gives the boundary conditions for a bulk
on-shell action.

Symmetries: T, Zj
When A\ & A\o: T, Zok
T: fixed by Zo
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Fidelity from a replica trick

At large N: this manifold gives the boundary conditions for a bulk
on-shell action.

Symmetries: T, Zj

When A\ & A\o: T, Zok
A T: fixed by Zo

¥, %: fixed by T, T

-

) 2
- g Tah -

el

\
-

’

/
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Fidelity from a replica trick

Using 7 and Z, symmetries, only need consider action on a part of
this manifold.

33 /52
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Fidelity from a replica trick

P1P2P1P2P1P2

31/52

Pirsa: 19120055 Page 42/80



Fidelity from a replica trick

tr ([)1[)2[)1 201 pg)
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Fidelity from a replica trick

At large N: this manifold gives the boundary conditions for a bulk
on-shell action.

T

Symmetries: T, Zj
When Ay = A\y: T, Zoy
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Fidelity from a replica trick

At large N: this manifold gives the boundary conditions for a bulk
on-shell action.

Symmetries: T, Zj
When A\ = \o: T, Zo
T: fixed by Zo
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Fidelity from a replica trick

At large N: this manifold gives the boundary conditions for a bulk
on-shell action.

Symmetries: T, Zj

When Ay &= Ao: T, Zoy
A T: fixed by Zoy

2,5 fixed by T, T

\

b o

S
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Fidelity from a replica trick

Using 7 and 7Z; symmetries, only need consider action on a part of
this manifold.
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Fidelity from a replica trick

Using 7 and 7Z; symmetries, only need consider action on a part of
this manifold.
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Fidelity from a replica trick

Using 7 and Z, symmetries, only need consider action on a part of
this manifold.
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Fidelity from a replica trick

Using 7 and Z, symmetries, only need consider action on a part of
this manifold.

o n
s /
\ /
A ’
\ _—
r
\ B
), -
\ / -
-
\ ’ -
-
\lf
- - -
' - s O ot 3/ \
-
/ N
/ \ b
, \ LS
- %
/ S, -
P y - -
/ .
\ /
/ A
\
/ \ - J
4 -

Stotal = 2k Re (Spart)
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Fidelity from a replica trick

|dentify the two L.
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Fidelity from a replica trick

A A
|dentify the two L.
Resulting manifold:
® Fields discontinuous at X.
34 /52
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Fidelity from a replica trick

Identify the two Xs.
Resulting manifold:
e Fields discontinuous at .

® Conical defect at T of opening angle 7 /k.

34 /52
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Fidelity from a replica trick

/\]

|dentify the two L.
Resulting manifold:
® Fields discontinuous at ..
® Conical defect at Y of opening angle 7 /k.

iat T %
® Boundary conditions A1, As " 34 /52
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Fidelity from a replica trick

Now analytically continue & —» 1,

Opening angle at T becomes 27, so no more conical defect.

Location of T still important. It becomes minimal surface
hOlTIOlOgOUS to ;"*1 [M.l|(l.ul'r|.l valmwy(/_ 201 3].

Field discontinuities at . are constrained by approximate 7
symmetry. This can be understood as k — .

2

35 /52
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End up with a fidelity in terms of bulk action on:

Al

Note that boundary conditions are the same as for (Az|\y).

Only difference is discontinuity at .

Can think of discontinuity as arising from operator insertion:
(A2| X[ A1)

Fo 1 V)
where X is an operator acting at X. 36 /52

Pirsa: 19120055 Page 56/80



Pirsa: 19120055

It is possible to construct X using bulk perturbation theory.
Symmetries of replica path integral ensure XTX = I.
X acts at . Bulk reconstruction [Dong-Harlow-Wall] =

A = [4® X As

where 4 is identity on H 4, and X j is unitary acting on H j.

Define

Jouay YT ahe)

l101) is a purification of py, and [1) is a purification of p,.

e >

(12]1)1) contains (A2|X|A1), so we can relate it to the fidelity.

37 /52
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Holographic parallel purifications

The precise relationship between the two bulk actions then
translates to:

e (/ViPavL ) = 1(aly)]

So Uhlmann's theorem == |[i),

tp2) are parallel.

Thus we have constructed parallel purifications of the holographic
states p, po.

38 /52
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Holographic parallel lift

Consider closed curve p(s) = p(A(s)) given by reducing |A(s)),
where A(s) is a curve of boundary conditions.

[A(8)) (A(s)]

P(8) = 0 & "5 )T s))

-

Pick p1,p2,...pn along curve.

Using the above results, may construct sequence of parallel
purifications

) = ) /(i) () = XT h2) [/ (i),

i) = XIX3. XE N /v ()
As n — o0 these states converge to a parallel lift of p(s).

39 /52
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Holographic Uhlmann holonomy

Each X, inserts operator on 3., so may be written
Xi=1r® X},
Uhlmann holonomy is given by

lim X A1XA2  XAn:

n—00
This is a unitary operator acting on H j.

In principle the action of this operator contains a large amount of
information about the entanglement between A and A.

40 /52
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Holographic Uhlmann phase

Uhlmann phase given by

(U |“J"H> (Vn|v¥m |> o (Ys|2) (Yo

Not hard to compute this by writing correlators (A,
terms of bulk action.

1) = exp(i7y)

X

Ai) in

41 /52
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Holographic Uhlmann phase

UhImann phase given by
(-z,f"-‘||tf’n> (f;"-‘u|'(a"’u_ |> ‘o (_l,”“:{\l,""-z_) (-;/"-g|¢/-'|> — ('X[)(i‘}')

Not hard to compute this by writing correlators (A 1|X;|Ai) in
terms of bulk action.

One must be careful about the final correlator (11 |1,,), because this

involves
JT r r
</\t|:\lt\'j):...t'\_I_I'A'”).

But this can be done again in terms of bulk action.

41 /52
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Holographic Uhlmann phase

One finds:
n .
v =1 lim E / i, 0¢bi]
n—00 4 /v
9=

where:
® ¢, = dominant bulk field configuration for A;.
® V)i = Pi+1 — Pi.

® OL[}| = E|p] - 6 + d(0[oh, 09]).

42 /52
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Holographic Uhlmann phase

One finds:

v =1 lim 2 / O|p;, 6]
(R d®

where:

* ¢; = dominant bulk field configuration for A;.

® )i = Pit1 — Pi.
® ) ,;I(,f)J — f‘.-‘[q’)J . qu’) { (](H[q’), (Sf;‘)])'

0 appears because we are computing variations of the bulk action

.Sf = / Iz.

42 /52
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Holographic Uhlmann phase

One finds:
~ -‘J“III}IL L/ Opi, dep;)

where:
* ¢; = dominant bulk field configuration for A;.
® 0¢i = Pis1 — Pi.
o 5L(#) = Elg] - 56 + d(8l4, 3¢).

0 appears because we are computing variations of the bulk action

;Sr = / Iz.

The integral is only done over ¥ because of some auspicious
cancellations (related to discontinuities at ).

42 /52
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Holographic Uhlmann phase

For n — o0, we may replace the sum by an integral:

v = / 10, where © = / 0.
JC by

o

(' is a curve ¢(s) in field space, determined by the boundary

conditions A(s).

O[p, d¢| is a 1-form on field space, because d¢ is a field space
vector.

The Uhlmann phase 7 is the integral of the connection a = 0,

43 /52
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A Wick S i NS A
rotate
> Lorentzian
v

a = l_(;’_)lrf), rs.j")| = § / H|r;")_(srf)|
J¥
This is a Euclidean expression.

To get a in terms of Lorentzian fields, Wick rotate 7 — —it.
5 - (_)[d)l or s ()'(_ff)l ()r] - / ()[QJ)I or dd)l ur]
J¥

dLor are the Wick-rotated fields. Factor of 7+ goes away because
there are an odd number of time derivatives.

44 / 52

Pirsa: 19120055 Page 67/80



In Lorentzian spacetime, domain of
dependence of ¥ is the entanglement wedge.

Curvature of a = © is equal to exterior
derivative of ©.

Covariant phase space formalism =
exterior derivative of © is {): the symplectic
form of fields in the entanglement wedge.

['heorem
The curvature of the Uhlmann phase is holographically dual to the
symplectic form of the entanglement wedge.

45 /52
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Comments

When A contains the entire boundary:
* Entanglement wedge contains all of bulk.
® Uhlmann phase reduces to Berry phase.

So we recover the result of [Belin-Lewkowycz-Sarosi|: Berry curvature is
dual to bulk symplectic form.

The result presented here is thus a generalisation of theirs.

46 /52
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Comments

This result provides a previously absent context to the meaning of
emergent classical bulk subregion physics:

Classical bulk subregion physics emerges in
measurements of the Uhlmann phase.

Uhlmann phase IS a genuine observable [Ab(rrg—Kull—Sj()qvml.—()l (2007),
Viyuela-Rivas-Gasparinetti-Wallraff-Filipp-Martin-Delgado (2016)].

Would be useful to understand more details of this context.
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Comments

We considered states built on the vacuum |0).

|A) = ’l‘oxp( / drd® 1tz \(r, z) - C)(T,.r)) 10) .
Jr<l

But we can pick more general |0), and the same argument works.
For example, thermofield double in two copies of the CFT,

Path integral on S9! x [0, 3/2|. Corresponds to a black hole in the

bulk.
48 / 52
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Comments

There is an ambiguity in the covariant phase space formalism.

OL = FE - 0¢ + d0 only defines ¢ up to

Hl.(a'l‘)‘ fS("f)J » H[(’,‘I)‘ (Sd)] l (I( l\' [(,IF)1 ‘S‘.ffl’J) .

(n)-/H ,\/Hi/ K.
> J¥ Joy

However, Uhlmann phase is unambiguous. Therefore, this result
provides a resolution to the ambiguity.

49 /52
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Comments

We should expect pure states to give a classical phase space in the
classical limit.

But it is not so clear that there should be a classical phase space for
mixed states.

50 /52
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Comments

We should expect pure states to give a classical phase space in the
classical limit.

But it is not so clear that there should be a classical phase space for
mixed states,
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Comments

We should expect pure states to give a classical phase space in the
classical limit.

But it is not so clear that there should be a classical phase space for
mixed states,

Clearly there is one for the holographic states considered here. Why?

Can run this backwards: quantise the phase space. Pure states in
subregions?
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Other future directions

® This result is for Einstein gravity (+ other fields), at leading
order in 1/N. Would like to understand both higher derivative
corrections, and quantum /statistical corrections.

® [Belin-Lewkowycz-Sarosi] used their result to explore holographic
complexity. Would be useful to extend their methods to
subregion complexity.

® Holographic renormalisation.
® Connections with modular theory.

®* Would like to apply these ideas in combination with recent
work on replica wormholes and black hole information paradox.

* Topological phases of holographic condensed matter.
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Thank you!
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Resolution of the covariant phase space ambiguity

SAT*

Consider field variation d¢:

® Obeys variation of boundary
conditions —d\, SA T

® 0¢ changes sign when
crossing ..

-0\
Let 3 be a surface tightly enclosing . We enforce
/ O(h, 6¢p) = 0.
JB
This can be done by appropriate redefinition 0 —» 0 + d K.

One can show that this is consistent with the Uhlmann phase, and

that it resolves the ambiguity.
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