Title: Asymptotic and Catalytic Resource Orderings: Beyond Majorization

Speakers: Tobias Fritz

Series: Perimeter Institute Quantum Discussions

Date: December 04, 2019 - 4:00 PM

URL: http://pirsa.org/19120051

Abstract: This talk is a progress report on ongoing research. I will explain what resource theories have to do with real algebraic geometry, and then present a preliminary result in real algebraic geometry which can be interpreted as a theorem on asymptotic and catalytic resource orderings.

It reproves the known criterion for asymptotic and catalytic majorization in terms of $R\tilde{A}$ only entropies, and generalizes it to any resource theory which satisfies a mild boundedness hypothesis. I will sketch the case of matrix majorization as an example.

Pirsa: 19120051 Page 1/25

Asymptotic and Catalytic Resource Orderings: Beyond Majorization

Tobias Fritz

December 2019

Pirsa: 19120051 Page 2/25

Overview

- ▷ Asymptotic and catalytic majorization
- ▷ The algebraic structure of resource theories
- ▷ Real algebra and Positivstellensätze
- ▷ A new Positivstellensatz for asymptotic and catalytic orderings
- ▷ Application to (matrix) majorization and random walks
- ightharpoonup Getting rid of arepsilon

Pirsa: 19120051 Page 3/25

Submajorization

Let $x=(x_1,\ldots,x_n)$ and $y=(y_1,\ldots,y_m)$ be vectors with entries in \mathbb{R}_+ .

Definition

x submajorizes y, denoted $x \succ_w y$, if

$$\sum_{i=1}^{k} x_i \ge \sum_{i=1}^{k} y_i \qquad \forall k,$$

assuming decreasing rearrangement, $x_1 \ge ... \ge x_n$ and $y_1 \ge ... \ge y_m$, and padding with 0's if necessary.

- $\triangleright x \succ_w y$ iff there is doubly substochastic matrix R such that y = Rx (up to padding 0's).
- \triangleright Majorization $x \succ y$ defined as $x \succ_w y$ and $\sum_i x_i = \sum_i y_i$.
- ▷ Characterizes pure-state LOCC via Nielsen's theorem.

- ▷ It is useful to have monotones to detect (non-)majorization.
- ightharpoonup The **Rényi entropies** for $\alpha \in \mathbb{R} \cup \{\pm \infty\}$ and normalized x,

$$H_{\alpha}(x) := \frac{1}{1-\alpha} \log \left(\sum_{i} x_{i}^{\alpha} \right),$$

are great monotones!

▷ Special cases:

$$\triangleright H_0(x) = \sum_i \log x_i$$
.

- \triangleright Shannon entropy $H_1(x) = -\sum_i x_i \log x_i$.
- \triangleright Min-entropy $H_{\infty}(x) = -\log \max_i x_i$.
- $ightharpoonup M_{-\infty}(x) = -\log\min_i x_i$.

The Rényi entropies detect catalytic majorization:

Theorem (Klimesh '07, Turgut '07, modulo subtleties)

If $\sum_i x_i = \sum_i y_i$ and $H_{\alpha}(x) < H_{\alpha}(y)$ for all α , then there is z with

$$x \otimes z \succ y \otimes z$$
.

and asymptotic majorization:

Theorem (TF '15, Jensen '18)

Under similar hypotheses,

$$x^{\otimes n} \succ y^{\otimes n}$$

Goal: prove statements like this for resource theories in general!

Pirsa: 19120051 Page 6/25

The algebraic structure of resource theories

Definition

A preordered semiring S is a set with binary operations

$$+, \cdot : S \times S \longrightarrow S$$

satisfying the usual axioms with neutral elements 0 and 1, and a preorder relation > such that

$$x \ge y \implies x + z \ge y + z, \qquad xz \ge yz.$$

Interpretation:

- ▷ Preorder ≥: convertibility relation between resource objects.
- ▶ Multiplication ·: combination of resource objects.
- ▷ Addition +: often little resource-theoretic interpretation, but mathematically extremely useful.

Pirsa: 19120051 Page 7/25

- ▷ Example: quantum channels under direct sum and tensor product.
- ightharpoonup The vectors $x \in \mathbb{R}^d_+$ form a preordered semiring Major:
 - ▶ with direct sum and tensor product as algebraic operations, and
 - \triangleright submajorization \succ_w as preorder.
- \triangleright Example: compactly supported probability measures on \mathbb{R} , with

 - ▶ the stochastic order as preorder.

Think: distribution of work in thermodynamics.

Pirsa: 19120051 Page 8/25

ightharpoonup The ℓ^p -norms for $p \in [1, \infty)$

$$||x||_p := \sum_i x_i^p$$

are monotone semiring homomorphisms $\mathsf{Major} \to \mathbb{R}_+.$

ightharpoonup The ℓ^∞ -norm

$$||x||_{\infty} := \max_{i} x_{i}$$

is a monotone semiring homomorphism Major $o \mathbb{TR}_+$, where

$$\mathbb{TR}_+ := (\mathbb{R}_+, \mathsf{max}, \cdot)$$

are the tropical reals.

And there are **no other ones**! Morally, this is why the Rényi entropies crop up.

- ▷ Example: quantum channels under direct sum and tensor product.
- ightharpoonup The vectors $x \in \mathbb{R}^d_+$ form a preordered semiring Major:
 - ▶ with direct sum and tensor product as algebraic operations, and
 - \triangleright submajorization \succ_w as preorder.
- \triangleright Example: compactly supported probability measures on \mathbb{R} , with

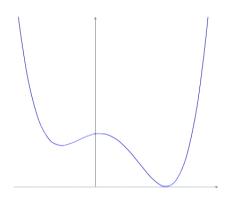
 - ▶ the stochastic order as preorder.

Think: distribution of work in thermodynamics.

Pirsa: 19120051 Page 10/25

Real algebra (ic geometry)

 \triangleright When does a polynomial in $f \in \mathbb{R}[X]$ take on only nonnegative values?

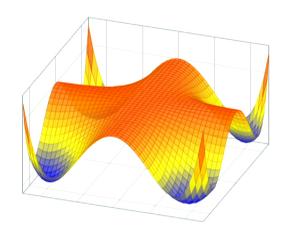


$$f = X^4 - 2X^3 - 6X^2 + 2X + 25$$
$$= (X^2 - X - 4)^2 + (X - 3)^2$$

- \triangleright Writing f as a sum of squares is a **certificate** of nonnegativity.
- ▷ Existence of such a certificate is necessary and sufficient for nonnegativity.

Proof by fundamental theorem of algebra!

 \triangleright When is $f \in \mathbb{R}[X, Y]$ nonnegative? Example: **Motzkin polynomial**



$$M := X^{4}Y^{2} + X^{2}Y^{4} + 1 - 3X^{2}Y^{2}$$

$$= 3\left(\frac{X^{4}Y^{2} + X^{2}Y^{4} + 1}{3} - \sqrt[3]{(X^{4}Y^{2}) \cdot (X^{2}Y^{4}) \cdot 1}\right)$$

$$\geq 0.$$

- ▷ M cannot be written as a sum of squares of polynomials.
- ▷ *M can* be written as a sum of squares of **rational** functions. Also a certificate of nonnegativity!

Hilbert's 17th problem

Theorem (Artin '27)

Every multivariate polynomial $f \in \mathbb{R}[\underline{X}]$ with $f \geq 0$ can be written as a sum of squares of rational functions:

$$f = \frac{g_1^2 + \ldots + g_m^2}{h^2}$$

for $g_1, \ldots, g_m, h \in \mathbb{R}[\underline{X}]$.

▷ Surprisingly, no known proof without model theory!

More generally, real algebra studies the relation between:

- p geometric positivity: taking nonnegative (or positive) values on a set (or spectrum),
- algebraic positivity:
 existence of a nonnegativity (positivity) certificate of a fixed type

A Positivstellensatz:

- ▷ Gives conditions for when the two coincide (approximately).
- \triangleright Applies to $\mathbb{R}[\underline{X}]$ or to classes of abstract **ordered rings**.

Pirsa: 19120051 Page 14/25

Real algebra and resource theories

- ightharpoonup Traditionally, emphasis on polynomial rings $\mathbb{R}[\underline{X}] = \mathbb{R}[X_1, \dots, X_d]$.
- ▷ Resource theories: abstract preordered semirings!
- ▶ Most standard applications:

No algebraic certificate \implies No geometric inequality

Example: Polynomial optimization via semidefinite programming^[1], NPA hierarchy.

▶ Resource-theoretic applications:

Geometric inequality \implies **Algebraic certificate exists**

Pirsa: 19120051 Page 15/25

^[1] Jean Bernard Lasserre. An introduction to polynomial and semi-algebraic optimization. Cambridge University Press, Cambridge, 2015.

▷ I will state a Positivstellensatz for preordered semirings, generalizing Strassen's^[2].

Definition

An element $u \ge 1$ in an ordered semiring S is **power universal** if for every nonzero $x \in S$ there is $k \in \mathbb{N}$ such that

$$x \le u^k$$
, $1 \le xu^k$.

- ▷ Interpretation: Universal resource which can generate and absorb any other resource object, given enough copies.
- Example: in Major, every x with $|\operatorname{supp}(x)| \ge 2$ and $||x||_1 > 1$ is power universal, e.g. x = (1,1).

Pirsa: 19120051 Page 16/25

^[2] Volker Strassen. "The asymptotic spectrum of tensors". In: J. Reine Angew. Math. 384 (1988), pp. 102–152.

Theorem (T.F. '19)

S ordered semiring, $u \in S$ power universal.

Let $x, y \in S \setminus \{0\}$. Suppose f(x) < f(y) for all monotone homs

$$f: S \to \mathbb{R}_+$$
 and $f: S \to \mathbb{TR}_+$.

Then:

- (a) There is $a \in S \setminus \{0\}$ such that $ax \leq ay$.
- (b) There is k such that

$$u^k x^n \le u^k y^n \qquad \forall n \gg 1.$$

(c) If y itself is power universal, then

$$x^n \le y^n \qquad \forall n \gg 1.$$

Conversely: if either of these inequalities holds, then $f(x) \leq f(y)$ for all f.

- ▷ Instead of positivity, the semiring situation is concerned with comparison, both geometrically and algebraically.
- > Structure of proof is standard, but the details are intricate. It involves a curious polynomial identity:

$$\sum_{k=0}^{n} \left[a_k \left(\sum_{j=0}^{n} b_j x^{-j} \right) (x+1) \sum_{i=0}^{k-1} x^i + b_k \left(\sum_{j=0}^{n} a_j x^j \right) (x^{-1}+1) \sum_{i=0}^{k-1} x^{-i} \right]$$

$$= \sum_{k=0}^{n} \left[a_k \left(\sum_{j=0}^{n} b_j \right) (x+1) \sum_{i=0}^{k-1} x^i + b_k \left(\sum_{j=0}^{n} a_j \right) (x^{-1}+1) \sum_{i=0}^{k-1} x^{-i} \right].$$

And a reduction to the **semifield** case.

Example

For X compact Hausdorff, $C(X)_{>0} \cup \{0\}$ is a semifield.

Pirsa: 19120051 Page 18/25

Theorem (Preliminary)

For normalized $x, y \in \text{Major with } |\sup(x)| \ge 2$, suppose that

$$H_{\alpha}(x) \ge H_{\alpha}(y) \quad \forall \alpha \in [1, \infty)$$

and $H_{\infty}(x) > H_{\infty}(y)$.

Then for all $\varepsilon > 0$, there is normalized z such that

$$x \otimes z \succ_{w} (1 + \varepsilon) y \otimes z$$
,

and

$$x^{\otimes n} \succ_w (1+\varepsilon)^n y^{\otimes n} \quad \forall n \gg 1.$$

∨ Very similar to existing result^[3].

Pirsa: 19120051 Page 19/25

^[3] Guillaume Aubrun and Ion Nechita. "Catalytic majorization and ℓ_p norms". In: Comm. Math. Phys. 278.1 (2008). arXiv:quant-ph/0702153, pp. 133–144.

Theorem (T.F. '19)

For bounded random variables X and Y, suppose that

$$\mathbb{E}[e^{tX}] \leq \mathbb{E}[e^{tY}] \qquad \forall t \geq 0,$$

and $\max X < \max Y$.

Then for all $\varepsilon > 0$ there is bounded Z independent of X and Y such that

$$P[X + Z \ge c] \le (1 + \varepsilon) P[Y + Z \ge c] \quad \forall c \in \mathbb{R}.$$

Furthermore, in terms of i.i.d. copies: for all $\varepsilon > 0$,

$$\mathbf{P}\left[\sum_{i=1}^n X_i \geq c\right] \leq (1+\varepsilon)^n \, \mathbf{P}\left[\sum_{i=1}^n Y_i \geq c\right] \qquad \forall c \in \mathbb{R}, n \gg 1.$$

⊳ Related independent work^[4].

^[4] Xiaosheng Mu et al. Blackwell dominance in large samples. arXiv:1906.02838.

Matrix majorization

- \triangleright P and Q real matrices with n columns. Write: P(a|x).
- $\triangleright P \succ_w Q$ if there is substochastic R with

$$Q = RP$$
, i.e. $Q(b|x) = \sum_{a} R(b|a) P(a|x)$.

▷ Semiring structure is column-wise:

$$(P \oplus Q)(-|x) := P(-|x) \oplus Q(-|x),$$

$$(P \otimes Q)(-|x) := P(-|x) \otimes Q(-|x).$$

Matrix majorization

 \triangleright Now the monotone homomorphisms to \mathbb{R}_+ are given by values of the **Hellinger transform**

$$H_{\alpha}(P) := \sum_{x} \prod_{x=1}^{n} P(a|x)^{\alpha_x}$$

parametrized by α with $\alpha_x \geq 0$ and $\sum_x \alpha_x = 1$.

- ➤ The Positivstellensatz can be applied, essentially classifying asymptotic and catalytic matrix majorization!
- \triangleright Plenty of quantum information applications (especially for n=2, relative majorization).

Pirsa: 19120051 Page 22/25

Further improvements

- \triangleright Ultimately we want to get rid of the ε 's, obtaining exact conditions for when $x^{\otimes n} \succ y^{\otimes n}$.
- ▷ I also have a preliminary result which achieves this (work in progress).
- ▷ Concerned with preordered normed semirings,

$$\|-\|:S\to\mathbb{R}_+,$$

where only elements of equal norm are comparable.

▷ In Major, this is normalization of probability,

$$||x|| := \sum_{i} x_i.$$

Derivations and Shannon entropy

▷ Then also order-reversing homomorphisms are relevant, like

$$x \longmapsto \sum_{i} x_{i}^{\alpha}$$

for $\alpha < 1$.

ightharpoonup And additionally quantities $D:S
ightharpoonup \mathbb{R}_+$ which are additive and satisfy the **Leibniz rule**

$$D(xy) = ||x|| D(y) + D(x) ||y||,$$

making *D* into a **derivation**.

- ▶ What are these latter quantities for Major?
- Additivity implies

$$D((x_1,\ldots,x_n))=\sum_i\phi(x_i)$$

for some ϕ .

$$rac{\phi(pq)}{pq} = rac{\phi(p)}{p} + rac{\phi(q)}{q}.$$

ightharpoonup Hence (essentially) get $\phi(p) = -p \log p$, and therefore

$$D(x) = -\sum_{i} x_{i} \log x_{i}.$$