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Abstract: A superoscillatory function is a bandlimited function that, on some interval, oscillates faster than the highest frequency component shown
in the function's Fourier transform. Superoscillations can be arbitrarily fast and of arbitrarily long duration but come at the expense of requiring a
correspondingly large dynamic range. | will review how superoscillatory wave forms can be constructed and | will discuss the unusual behavior of
wave functions that superoscillate. For example, they can describe particles& nbsp;that automatically strongly accelerate when passing through a dlit.
A postselected stream of them represents a ray that cools the dlit walls, raising foundational and thermodynamic questions. Superoscillatory wave
forms are already being used for practical applications such as spatial resolution beyond the diffraction limit.& nbsp;
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Overview

1. What are superoscillations?

2. How to make them?

3. What are they good for?

4. At what cost?

5. What can we learn from their existence?
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What are Superoscillations?
°

What are superoscillations?

Superoscillations are functions that locally oscillate faster
than their fastest Fourier component.

Development of the theory:

1990s: Discovered numerically (Aharonov, Berry et al)

e Constructed analytically, unstable (AK et al)

Several constructions, unstable (multiple groups, AK et al).

First numerically stable method (AK, L. Chojnacki).

Oct 2019: new stable method allows detailed design (AK,
B. Soda)
[n hindsight: there were early theoretical and experimental

hints at the existence of superoscillations
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What are Superoscillations?
°

What are superoscillations?

Superoscillations are functions that locally oscillate faster
than their fastest Fourier component.

Development of the theory:

1990s: Discovered numerically (Aharonov, Berry et al)

e Constructed analytically, unstable (AK et al)

Several constructions, unstable (multiple groups, AK et al).

First numerically stable method (AK, L. Chojnacki).

Oct 2019: new stable method allows detailed design (AK,
B. Soda)
[n hindsight: there were carly theoretical and experimental

hints at the existence of superoscillations
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How to make them?
[ ]e]

2. How to construct superoscillations?

First numerically stable method (AK, L. Chojnacki, 2016):

Assume N functions {g,}N_; are each Q/N-bandlimited. Then:

-' N ‘ 0
® ¢:= ][, 8n is Q-bandlimited.
® ¢ possesses the zero-crossings of all of the g,.

Choose the functions g, to possess close-by zero crossings

(e.g., functions that are small translates of another).

— h is superoscillatory.
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How to make them?
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2. How to construct superoscillations?

First numerically stable method that also allows one to

design the shape of the superoscillations freely.
(AK, Barbara Soda, Oct. 2019):

Basic idea: Use the fact that polynomials have zero bandwidth.

1. Choose a smooth function f with desired behavior in

[—L. L].

SR . (n)
2. Calculate the Taylor series fy(x) 1= Zﬁl:o %,—X”

3. Chose a function g of bandlimit Q obeying
g(x)~1 Vxe [-L, L] with some desired accuracy.
Example: a flat sinc.

4. p(x) = fy(x)g(x) has BW Q and ¢ (x) ~ f(x) in [—L, L]
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What are they good for?
o000

What are superoscillations good for?

® To overcome general wavelength-limitations
® e.g. in optogenetics
® e.g. in bandwidth-limited (rather than S/N-limited)

communication

® For super-resolution, i.e., for resolution beyond the diffraction
limit.
® e.g. in optics
® e.g. in radar

® To probe fast dissipative processes in media
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What are they good for?
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Example: Landmine detection

Landmines possess sizes of order of 10cm.
* Radar of such wavelengths is absorbed by humidity.
* Use superoscillatory radar pulses with wavelengths above 1m.

* The water molecules should only temporarily get excited by the
10cm wavelength superoscillations.

— |If these radar pulses aren’t absorbed, obtain superresolution!
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At what cost?
[ ]

What is the cost for having superoscillations?

We proved two scaling laws.

The minimum dynamic range of superoscillatory functions grows:

® exponentially with the number of superoscillations,

e polynomially with the frequency of the superoscillations.
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What can we learn?
000

What insights may be gained from superoscillations?

(A) Shannon's noisy channel capacity theorem may be
generalizable to cover all noise models at once.

(B) Quantum thermodynamics needs to account for
superoscillatory cooling rays.
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What can we learn?
00e

(B) Cooling Rays

Assume a beam of electrons towards a screen with a slit,
superoscillatory where the slit is.

® Electrons that pass the slit will be accelerated.,

® The energy comes from the slit walls (or else slit location
must be uncertain).

How does quantum thermodynamics account for this?

Experimental challenge: How to experimentally produce
superoscillatory wave functions?
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What can we learn?
000

(A) Superoscillations and channel capacity

Recall the Shannon Hartley theorem:

Consider an €2-bandlimited channel with additive Gaussian noise
and average signal-to-noise power ratio S/N. Its capacity, C, is:

S
C = Blog, (1+N)

How can this theorem be compatible with the existence of
superoscillations?

It's compatible because of the scaling laws of superoscillations!
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What can we learn?
(o] le]

Generalized channel capacity formula from SOs?

S
C = Blog, (1+N)

Observation:

® The Shannon Hartley theorem assumes Gaussian additive
noise.

® But the scaling laws of SOs do not require any noise model!

Challenge: is there a noise-model independent Shannon-Hartley
type theorem which, roughly, replaces S/N by the dynamic range?
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Summary

e \What are superoscillations? Faster than Fourier.
e How to make them? Multiplicatively.

e \What are they good for?
Super-resolution, probing fast dissipation, optogenetics ...

® At what cost?
Large dynamic ranges. Possible, e.g., in photon counts.

® What can we learn from their existence?
* possibly deeper understanding of channel capacities
* possibly deeper understanding of quantum thermodynamics
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