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o Approaching quantum gravity from different directions:

1 / C Energy scale

Quantum |
Gravity

£
h

(I didn’t include cosmological constant and number of d.o.f. here)
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Ideas behind the construction of Relative Locality:

G.Amelino-Camelia, L.Freidel, J.Kowalski-Glikman and L.Smolin, PRD, 2011

A deepening of relativistic principles between interaction and observer

Our knowledge of spacetime geometry is constructed from the
measurement of probes -- energy, momenta and times of events.

Allowing momentum space to have nontrivial geometry is a natural
realization of the Born reciprocity.

Taking account of possible “microcausality” of interaction vertex

Possible Planck scale modification of Lorentz symmetry.

New physics in the regime #i—0 Gy—0 but M,=hc/Gy fixed.
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Relative Locality is a proposal for describing the Planck scale modifications to
relativistic dynamics resulting from non-trivial momentum space geometry

G.Amelino-Camelia, L.Freidel, J. Kowalski-Glikman and L.Smolin, PRD, 2011

Taking momentum space (P, ¢”°, 1'®*) as primary, and formulating classical dynamics
on the phase space 7*(P).

There is no universal spacetime. Spacetimes are cotangent spaces attaLh on eauh
momentum point x; C Tp ,  canonical conjugate variable {x},p h} =0,0
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Relative Locality is a proposal for describing the Planck scale modifications to
relativistic dynamics resulting from non-trivial momentum space geometry

G.Amelino-Camelia, L.Freidel, J. Kowalski-Glikman and L.Smolin, PRD, 2011

Taking momentum space (P, ¢"°, 1'®*) as primary, and formulating classical dynamics
on the phase space  7*(P).

There is no universal spacetime. Spacetimes are cotangent spaLeq attaLh on eauh
momentum point x; C T el canonical conjugate variable {x P h} = 5"

The addition rule of momenta is defined as a map:
B P.x Plroie
(p,q) > p@®q with inverse (©p) @ p = 0

The form of vertex reflects “microscopic causal orders”: Ko = (p® q) Ok =0

ret (k)

; . o5
Momentum space P : Connection —— (pq )k q |

s B  Le 2 s J—r[—f._
curvature: lack of associativity Opa Oqy

torsion: lack of commutativity of the momenta’s combination
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o The dynamics of particles is defined by the action:

S = Z j;” i Z q:u!
& Z/ ds(z5ps +NsC7 (p?)) + ZK::;(P'I(-‘%:))ZF

p :
maqqlqhell momenta conservation on vertex

¢’ (p) = D*(p”) — m3

o Equation of motion
aC (k")

ut = 48 = Ny 22
ok

How an interaction connects the end /starting

points of different particles” worldlines.
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What is the world view given by the action?

o There is no invariant global projection of the physical process into a
unique classical spacetime, the projection is observer dependent.

o If one assumes that x
and z are coordinates
of the same spacetime,
then distant observer
would see non-locality
of high-energy
collisions!
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S.= Z jrrr +Z"f:u!
_Z/ ds(x5p;, -'I—N]CI[J )+Zk“ (p” (

r=-(0%) 1. 751

o Causal relationship: Event B is in the causal past of event A if Ja sequence of
events B, By, ...B,, A,n > 0 s.t. from each event there exists an outgoing free-
propagating particle coming to the next event. We write it as B< A. Vice versa
we can define causal future C' > A.

Pirsa: 19120041 Page 9/22




Causal loops
[L. Q. Chen, Phys.Rev.D 88,024052 (2013) |

o The simplest case (two collisions) A<B, B< A

Particle 0 with momentum p” is created from event

A and then collides with another particle at event B.
The twist is now to consider particle 1 with momentum p' created at event B and then
colliding with another particle at event A, which creates the particle 0.

° Equationg (Mg— MB) 0 A= T0 (Mp) I_'{Lf;'—FTl’t.{,lf, 10, 1 ER

= (oK /oph) - (~aK2 jop) ™

F_N

o In the limit of Speécial Relativity
~f

_ _ : Toug + T1u; =0
o Invariant under momentum space diffeomorphism

o Slraightforward to generalize to loops that have more events A < BB =<' NN

(Mag—MpMc..M, )' 1 =nMpg.. Muyuj+
+ oM. Mpus + ... + T,,_],:\A.”_ Uy _1 + Tally,
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Kappa Poincare Momentum Space

Kappa-Poincare Hopf algebra, coming from a dimensionful deformation of the Poincare
group, can describe a momentum space with de Sitter metric, torsion and nonmetrici ty.
[G.Gubitosi & F. Mercati 2011, G.Amelino-Camelia, M.Arzano, J.Kowalski-Glikman, G.Rosati & G.Trevisan 2011]

Line element of the momentum space in comoving coordinates:
2 D) 2 o o1 S 1 0 ¢
ds® = dpg — e2Po/ K §ii dp;dp; 1,3 =1,2,3

Mass-shell condition ~ m(p) = kArccosh(cosh(pg/k) — P/ *|p1% /2K2)

Momenta addition @®@o=po+q (PSqi=pi+ e Po/ *q;

(PO g)o=po-go . (POq)i=p;— B BUEy,
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Kappa Poincare Momentum Space

Kappa-Poincare Hopf algebra, coming from a dimensionful deformation of the Poincare
group, can describe a momentum space with de Sitter metric, torsion and nonmetricity.
[G.Gubitosi & F. Mercati 2011, G.Amelino-Camelia, M.Arzano, J.Kowalski-Glikman, G.Rosati & G.Trevisan 2011]

Line element of the momentum space in comoving coordinates:
7 2 2 c =iq e Aot
ds® = dpg — e2Po/m g dp;dp; 1,5 =1,2,3

Mass-shell condition ~ m(p) = kArccosh(cosh(pg/k) — € 0 /15 1512 /2K2)

Momenta addition @®@o=po+q @PSqi=pi+ e~Po/ G

PO Qo=po—q (PO q);=p; — el P/"g

i

o For notation convenience, define left and right transport operator

p d(©p)
1" ,’f I . I

Ap ®q) [ A(p @ q) ;
=9 dp

dq phg P

o Important properties
(gdp)OPp=9 — l.-"f; - V§ = VI®PULe, = =UP I, Right inverse property

qbp q

ap

(";_ .wp_) O (p D q:} =q — 1_-}(3 Ui = (,r{;;w-rf 1__-';{::_”; = -Ver[, Left inverse property

9

(_.-Tﬂ"""’ S (_]rf’" : (.Ii." = (_f"};'1 ‘A'” k= IJ VP = Il;’ Chain rule (for associative addition rule)

q q k
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Then let us solve the equation of the simplest causal loop:

12 b 4 | 4 ; =i}
(Mg —MB)” o (MB)HH{, +7nuy, 70,71 €ER4

Ka=(k@p)o @ ol) =0

Ke=@' @qge(rep)=0

P

I
FIG.: The region of (p), p;) that possiblly leads to a causal

loop by events A & B when p{| = pj,p] = —pl,ro = 1.1ko =
']385, k} = - = 0.1x.

L (P6PY = Pop1)ToK
04 ™ [ph(ko — 70) + pl(ry — k1)]m

o x-dependence? r
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A general loop process:
L. Q. Chen, " Orientability of loop processes in Relative Locality" Phys.Rev.D 88, 124003(2013)

o Consider a loop with n vertices, in which each node
is associated with an equation of the momenta

conservation K y,K»5..K,, =0

o Define transport operator on vertex K,

H, = IK; )_I K, ) ‘ *
i Ipi-1i, Ipii+1 T'Pf---l.i G T}J-m+1

Imposing equations of motion around the loop (from
the *1, | €T,  and finally coming back to the same

point), we will get

“‘"w,ln‘{ﬂHHr] _'ZT,‘J.H?’;:J_H H H; (i=n+1:=1)

| = 1<j<n

(Using 1,  to label the endpoint which corresponds to event IC1on particle Pn,1's worldline.)

o The general condition of x-independence: Effective flatness!

T
x — independent <= H,,; := H 3=l

1=
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The difference between flat loop and the one has
“effective curvature”:

FIG. 3: Comparison between a flat loop (b) and a loop with effective curvature (¢). Both of them have the same event-net (a).
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Orientable loops

o For the momenta conservation of a vertex K ;in a loop, if the order of adding

internal momenta and external momenta has an orentation, i.e. clockwise or anti-
clockwise, we say that the vertex is orientable.

o Three-vertices are always orientable.

@ Above three-vertices (more than two external momenta), the vertices are orientable
only when the external momenta can be grouped as a whole up to permutations.

Non-orientable: K. =p, &l & ps @ls =0 ¢ external momenta

-S——

@ A loop is orientable: if all the vertices have the same orientation after embedding
the loop in a 2-d surface. 13

@ A nice property: Ry _AYK3
Ka=p1®lh®pa©l=0=2Ka =L @p®l®p =0 ohy K= P 00,01,
though dp, Ka # dp, Ka [ k= faokOR
H = (do Kl (R loh) =t e C Xt pa0fels

® Thus we just need to consider two cases

Ki=li®pi—1:P { "‘}h:‘f.+|) IC;. =1l; ® (Opii+1) ®Pi-1
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Orientable «-——> x-independent

@ Consider an orientable loop with n vertices and the
conservation law on the vertex given by

Ki =1l @®pi-1, © pii+1
Edge transport operator
II,— ([’T =1 { Pa 1 e)fl([f' ’PrrHI ] )—[ﬂ’”-i-l

Pi—1.4

® Around the whole loop: n
Hiot = H Uj?,','fr,l =1

=l

two kinds of non-orientable loops:

® E.g. the vertex m becomes of the opposi‘re orientatjgn compared with other vertices:
I:], — [JPm=1m .}/ Pm.m+1 , [JPn,1
A “Pn;l

”H l‘m " Pm,m41

I =i =l =g “ o
({jilf [l ¢ {f’“ :I g™ "['_-’.”’ o f-f‘,([lﬂ r\ji](s;l‘ i l\w:%)

(a®p), P8%)s | |p g=0 7

@ Some of the vertices do not have orientation, e. g Ki=1lL®pi-1,®d ki ®(Opii+1)
! rD; Bk, rPi,i+1
H, =Sl et He, &1
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A twisted loop could break global momentum concervation

[A.~Banburski, Phys. Rev.D 88, 076012 (2013)]

Ka=po(k@l) Kp=(1&k)og

A twisting loop with p # ¢

o There are loop processes that locally momenta are conserved, but there is
no global momentum conservation.

o Also has x-dependence -- breaking of translation invariance
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5 '14'7’71'”'1"17’}] @L T’GS'LL['I'S [L.Q. Chen, Phys.Rev.D 88, 024052 (2013) ]

[L. Q. Chen, Phys.Rev.D 88, 124003(2013) ]

The Lagrangian in the theory of Relative Locality allows causal loops, but does
not lead to any logical paradox.

For loop processes in the momentum space with associative addition rule , for

r a-Poincare mc¢ S i
example Kappa-Poincare momentum space

Gausal &= The loop is orientable = X-independent

0

Global momenta conservation

Non-orientable loops contain an “effective curvature” caused by a combination of
nonlinear interactions, and these loops have strange features.

For non-associative momentum space (such as Snyder momentum space),
“orientablility” will not lead to effective flatness, we expect weird loops to happen in

general.

The mathematical result is consistent with the work in Rome in 2014:

G.Amelino-Camelia, S.Bianco, F.Brighenti and R.].Buonocore,
‘Causality and momentum conservation from relative |UL‘:I|if}‘,“ |’||__\'&-.. Rev. D 91, no. 8, 084045 (2015)
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In the quantum gravity regime, we expect that the notion of locality and
causality to be nontrivial and deviate from our current knowledge.

As we know in classical gravity, causality is as rigid as classical geometry, and
diffeormophism invariant observables, conserved quantities are essentially
quasi-local.

In the framework of quantum field theory, we know that locality, causality, the
spin statistics are tightly and precisely related to each other.

In quantum reference frame, we just heard the new result of observer-
dependent locality and entanglement; In quantum information, we learn that
the superposition of channels lead to interesting notion of causal structure.

1/e 4~ Energy scale
It is very exciting to combine these
different regimes, and see how our
fundamental notion of causality,

locality and structure of spacetime :
deviated from what has been known. l /
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Thank you .
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