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Abstract: | will present an extension of the recent theory of quantum causal models to cyclic causal structures. This offers a novel causal perspective
on processes beyond those corresponding to standard circuits, such as processes with dynamical causal order and causally nonseparable processes,
including processes violating causal inequalities. As an application, | will use the algebraic structure of process operators that is induced by the
causal structure to prove that all unitarily extendible bipartite processes are causally separable, i.e., their unitary extensions are variations of the
guantum SWITCH. Remarkably, the latter implies that all unitarily extendible tripartite quantum processes have realizations on time-delocalized
systems within standard quantum mechanics. This includes, in particular, classical processes violating causal inequalities, which admit simple
implementations! | will explain what the violation of causal inequalities implies for the variables of interest in these implementations. The answer is
given again by the theory of cyclic causal models.

Based on joint works with Jonathan Barrett, Cyril Branciard, Robin Lorenz, and Julian Wechs.
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Beyond Quantum Computers

G. Chiribella, G. M. D'Ariano, P. Perinotti, B. Valiron
(Submitted on 1 Dec 2009 (v1), revised 20 Dec 2009 (this version, v2), latest version 27 Oct 2013 (v4))

The manuscript poses and addresses a new very fundamental issue in Quantum Computer Science, which is
going to have a radical impact on the way we currently conceive quantum computation. We show that there
exists a new kind of "higher-order" quantum computation, potentially much more powerful than the usual
quantum processing, which is feasible, but cannot be realized by a usual quantum circuit. In order to
implement this new kind of computations one needs to change the rules of quantum circuits, also
considering circuits with the geometry of the connections that can be itself in a quantum superposition.
The new kind of computation poses also fundamental problems for unexplored aspects of quantum
mechanics in a non-fixed causal framework, which go far beyond computer-science problems, and may be

of relevance in quantum gravity.

Quantum computations without definite causal structure

Giulio Chiribella, Giacomo Mauro D’Ariano, Paolo Perinotti, and Benoit Valiron
Phys. Rev. A 88, 022318 — Published 14 August 2013

We show that quantum theory allows for transformations of black boxes that cannot be
realized by inserting the input black boxes within a circuit in a predefined causal order. The
simplest example of such a transformation is the classical switch of black boxes, where two
input black boxes are arranged in two different orders conditionally on the value of a
classical bit. The gquantum version of this transformation—the quantum switch—produces
an output circuit where the order of the connections is controlled by a quantum bit, which
becomes entangled with the circuit structure. Simulating these transformations in a circuit

with fixed causal structure requires either postselection or an extra query to the input black

boxes.
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Cyclic quantum causal models and violations of
causal inequalities

Ognyan Oreshkov

Université libre de Bruxelles

Based on ongoing works with J. Barrett, C. Branciard, R. Lorenz, and J. Wechs

Indefinite Causal Structure, Perimeter Institute, December 2019
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Main idea:

Extension of the theory of quantum causal models to
processes beyond those corresponding to fixed circuits
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Outline

Review of the PM framework and main idea of quantum causal models

Cyclic quantum causal models
- Theorem: compatibility = Markovianity
- Conjecture: Markovianity = compatibility ?

Examples (quantum SWITCH, the Baumeler-Wolf noncausal process)

An application: all unitarily extendible bipartite processes are causally
separable

Consequence: all unitarily extendible tripartite processes have realizations
on time-delocalized systems - causal inequalities can be violated,
even with classical systems!

What does the violation of a causal inequality imply for the variables
involved?
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“It is reasonable to expect that quantum gravity will be a probabilistic theory with
dynamic causal structure.”

Lucien Hardy, Probability Theories with Dynamic Causal Structure: A New Framework
for Quantum Gravity (2005).

“It is therefore likely that, in a theory of quantum gravity,
we will have indefinite causal structure.”

Lucien Hardy, Quantum gravity computers: On the theory of computation with indefinite causal
structure (2007).
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The quantum process matrix framework

{fo} .‘/.

(HA/ t

No assumption of global causal order

0. O., F. Costa, and C. Brukner, Nat. Commun. 3, 1092 (2012).
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The quantum process matrix framework

Joint probabilities

pIMI MY ) =Tr [W"in/‘w”ﬁn‘*wf" (M;.“inf*mn ® MfB Q- )J

Process matrix ’j

AN
A CJ operators
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The quantum process matrix framework

Joint probabilities

p(M/\ Ml}g, o ) — Ty {WAi"A”U‘Bi"Bum”' (M?inAmn R Mf’ian,[ R - )J

1 ?
Process matrix ’j

1. Non-negative probabilities: W*inAouBinBou > ()

A CJ operators

2. Probabilities sum up to 1:

Tr lWAinA(m[Bi“ Bnm"' (MAillAuul ® NBinBuul ® PRI )J = l

onall CPTP MAnAoun  NBinBou
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The quantum process matrix framework

An equivalent formulation as a second-order transformation:
[Quantum supermaps, Chiribella, D'Ariano, and Perinotti, EPL 83, 30004 (2008)]

wl i o 1o, wl  fe

@ CPTP w CPTP g = CPTP

a | ~TA1 BfTJ [ & al To
\

a channel from AyB, to AB,
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Processes compatible with fixed causal order
(quantum combs)

Bipartite example: 30T Ao
@ CPTP
A£B
e T 14
channel

The most general bipartite process
with no signalling from A to B T By T b

W";\in"'\nlll RiuBnlll - W‘f‘inHinBulrl ® ]1 "‘1nlll CPTP Q

B, A T b!
l state J

Pirsa: 19120019 Page 12/72



Bipartite processes with causal realization

WA%_B — no signalling from Ato B
WB#A - no signalling from B to A

More generally, we may conceive probabilistic mixtures of fixed-
order processes:

Wﬁ;AzBle — quf_B + (l . q)WBf_A

\

causally separable process
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(1) Multipartite causal separability is more complicated due to
the possibility of dynamical causal order

causal future

o'l'o

ol
ol
C

-

A

causal past

Oreshkov and Giarmatzi, NJP (2016); See also Wechs, Abbott, and Branciard, NJP (2019)
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There are process matrices that are not
causally separable.
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Violation of causal inequalities

Example (‘OCB’):

@ X —» ‘bbg

../f. e

Definite causal order =

Bl w

1
Psuce = EIP(\ =blb" =0) + P(y = alp” = 1)] <

0. O., F. Costa, and C. Brukner, Nat. Commun. 3, 1092 (2012).
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The (original) assumptions behind causal inequalities

Everything is imagined to be about events.

1) Causal Order: There is a global causal order on all events (systems entering and
leaving the labs, parties obtaining the input variables and producing the output
variables). The event of a system entering a given lab is the causal past of the event
of a system leaving that lab.

2) Free Choice: Each input variable (here a, b, b’) can only be correlated with events
in its causal future.

3) Closed Laboratories: The output variable produced by Alice can be correlated

with the input variable given to Bob only if Alice receives a system in her lab after
Bob has sent out his system.

0. O., F. Costa, and C. Brukner, Nat. Commun. 3, 1092 (2012).
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The (original) assumptions behind causal inequalities

Everything is imagined to be about events.

1) Causal Order: There is a global causal order on all events (systems entering and
leaving the labs, parties obtaining the input variables and producing the output
variables). The event of a system entering a given lab is the causal past of the event
of a system leaving that lab.

2) Free Choice: Each input variable (here a, b, b’) can only be correlated with events
in its causal future.

3) Closed Laboratories: The output variable produced by Alice can be correlated
with the input variable given to Bob only if Alice receives a system in her lab after
Bob has sent out his system.

Note: the formulation of 2) and 3) requires 1).

0. O., F. Costa, and C. Brukner, Nat. Commun. 3, 1092 (2012).
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A causally nonseparable process

Can violate the inequality with  p,,.. = 2+4\/§ > I‘
A A BB l 1 ) Auui Bin Ain Bin Hmll
W in‘loutPinPout —  _ l + (()-7 o + o’ ()-r o )
4 \/5 < < ;\ - <

two-level
systems

If we believe that 2) and 3) would hold if 1) holds, we must
conclude that 1) does not hold.

0. O., F. Costa, and C. Brukner, Nat. Commun. 3, 1092 (2012).
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Other causal inequalities and violations

Bipartite inequalities:

Simplest inequalities:
Branciard, Araujo, Feix, Costa, Brukner, NJP 18, 013008 (2016)

Biased version of the original inequality:
Bhattacharya and Banik, arXiv:1509.02721 (2015)

Multiparite inequalities:

Violation with perfect signaling:
Baumeler and Wolf, Proc. ISIT 2014, 526-530 (2014)

Violation by classical processes and operations:
Baumeler, Feix, and Wolf, PRA 90, 042106 (2014)
Baumeler and Wolf, NJP 18, 013036 (2016)

Simplest tripartite polytope:
Abbott, Giarmatzi, Costa, Branciard, PRA 94, 032131 (2016)

N-causal inequalities:
Abbott, Wechs, Costa, Branciard, Quantum 1, 39 (2017)
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Causality versus causal separability

can violate
causal inequalities

cannot violate
causal inequalities

Wcausally separable
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Causality versus causal separability

" extensibly causal

gl causally separable

extensibly causal
'v/,,»-——

N

causally separable
extensibly causally separable
(ECS)
classically =

controlled

q. circuits

classically controlled
quantum circuits

— I

—
—

a) Multipartite case. b) Bipartite case.

Oreshkov and Giarmatzi, NJP (2016)
Feix, Aradjo, and Brukner, NJP (2016)
Wechs, Abbott, and Branciard, NJP (2019)
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Example: the quantum SWITCH

The order of operations depends on a variable in a quantum superposition:

)

10> ——s — |1>ii ;—

(@|0) + BIN) — aOYULUP ) + BIYUPU |y

Chiribella, D'Ariano, Perinotti, and Valiron, PRA 88, 022318 (2013), arXiv:0912.0195 (2009)
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Example: the quantum SWITCH

A supermap:

UA W UB

irsa: 19120019 Page 24/72



Example: the quantum SWITCH

A supermap:
af s
/ ~
a | Tao | Bo | 1 bo
UA \\\ Us
\
a, T J\Al \\\ B, A T b
~L_ . \/{/
Q F N TS
-,
0)+1)
ﬁ

irsa: 19120019 Page 25/72



Example: the quantum SWITCH

A process matrix:

Charlie

N N

Sl

Alice W Bob

David
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Example: the quantum SWITCH

A process matrix:

The process matrix is not causally separabl

W= [W><W]|

(not a probabilistic mixture of different
process matrices)

and from Bob to Alice.

Charlie
Q A A S’
AAO BOJ\
Alice W Bob
J\.Al BI M
Q ¥ M S
David

However, it cannot violate causal inequalities!

Oreshkov and Giarmatzi, NJP 18, 093020 (2016)

Araujo et al., NJP 17, 102001 (2015)

But it allows signaling from Alice to Bob

e:
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Experimental implementations of the
gquantum SWITCH

Q w BS
o QWP . PBS
o Polarizer ‘ Detector

a Mirror ‘@ > Fiber coupler

Procopio et al., Nat. Commun. (2015) Rubio et al., Sci. Adv. (2017) Goswami et al., PRL (2018) ...
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Time-delocalized quantum systems and operations

Time Charlie
o\ Jo s .
| Ua
Bo
Us Bob
B,
O— Ua
a| /_ Q S b|
David
0. O., Quantum 3, 206 (2019); arXiv:1801.07594

Pirsa: 19120019 Page 29/72



Pirsa: 19120019

Time-delocalized quantum systems and operations

Time

o\ _Jo s
o U,

Bo

B,
O— Ua

a, /- Q S

0. O., Quantum 3, 206 (2019); arXiv:1801.07594
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Time-delocalized quantum systems and operations

Time
Identifying Alice’s operation:

o\ o s
U(l;QSBu—)GuQ’S’B; —_ U(I]A,r—MI()A() ® “ A—;—n‘—\—”
o U A

where A, is a nontrivial subsystem of QSB, defined
by the algebra of operators

B, OY = 10X0°® 0° @ 1% +[11[° ® 1° ® O,
O— Ua and A, is a nontrivial subsystem of Q'S’'B,, defined
/ by the algebra of operators
a f Q S 0" = 100019 @ 15 @ O + |[1)X1|¢ ® 05" ® 17"

O. O., Quantum 3, 206 (2019); arXiv:1801.07594
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With respect to A, and A, the experiment has the structure of a circuit with a cycle.

Charlie
Q' A A s
J\AQ BO!\
Alice W Bob
J\AI BI N
Q n n S
David
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Time-delocalized quantum systems and operations

Time
Identifying Alice’s operation:

o\ o s
U(l;QSBu—)GuQ’S’B; _ U(I]A,r—J'(I()A() ® “ A—;—>A—”
o U A

where A, is a nontrivial subsystem of QSB, defined
by the algebra of operators

B 0" = 0)01°® 0° @ 1% +[1X1|° ® 1° ® 0%,
O— Ua and A, is a nontrivial subsystem of Q'S’'B,, defined
/ by the algebra of operators
a f Q S 0% = 100019 @ 15 @ O + |[1)X1|1¢ ® 05" ® 1%

O. O., Quantum 3, 206 (2019), arXiv:1801.07594
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With respect to A, and A, the experiment has the structure of a circuit with a cycle.

Charlie
Q' A A S
J\AQ BO!\
Alice W Bob
J\AI BI M
Q n n S
David
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Unitarily extendible processes (bipartite example)

\.l
'I

0)0]

Not all processes are unitarily extendible!
(Example: the ‘OCB’ process is not)

Araujo, Feix, Navascues, Brukner, Quantum 1, 10 (2017)
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Claim:

All unitary extensions of bipartite processes have realizations on time-delocalized systems

Time

Charlie Charlie
ao C| a0 A A C|
o Up(Up) |

i Bo AAO Bo A
E i Bob = Uy U Bob

. i- ------------------- B- l--- : f\ I\Al Bl J\
i Us(Up) |
T T[T —_—_—_—_—_———_— A
a| DO a| DO

David David

0. O., Quantum 3, 206 (2019); arXiv:1801.07594
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Quantum causal models

Allen, Barrett, Horsman, Lee, Spekkens, PRX 7, 031021 (2017)
Barrett, Lorenz, Oreshkov, arXiv:1906.10726
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Quantum causal models

Note on conventions:

CJ representation of aCP map: & : L(Ha) = L(HB)

phia =3 E(i)a G @ 10) 4. (]

1

Node A: ’HAan - the incoming Hilbert space
‘H 40ut - (copy of) the dual of the outgoing Hilbert space

Interventions inside nodes represented by transposed CJ operators:
ka . [ &FA . .
T/.-\ = | P gout* | Ain

Process operator (process matrix) on nodes A, ... A;;:

O-;'l 1 ...."'1“ 6 £(®z ‘HJ;{‘;E‘H, @ HJJA:JUJ’)
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Quantum causal models

Main idea:

causal relations

influence through unitary channels
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Quantum causal models

Main idea:

causal relations = influence through unitary channels

CI ID

Al IE

No influence from Ato D through U: ‘lr¢ [,«)EI D|A gl = pf{} g @1 A+

(No possibility of signaling from A to D through U)

A is a direct cause of D in U, if and only if (1) does not hold.

(1)
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Factorization of unitaries from no-influence conditions

(red arrow means influence)

Theorem 4.5. (Factorization of a unitary channel from no-influence conditions): Let f"{’l‘h---“s-l-'\: a, be the CJ
representation of a unitary channel with n input and k output systems. Let S; C {A,..., A}, i = 1,..,k, be k
subsets of input systems such that there is no influence from the complementary sets to B, v.e., A; - By for all

A; & Si. Then the operator factorizes in the following way

k
U _ :
PB,.. . BylAy....A, — PB|S; »

=1

where the marginal channels commaute pairwise, [pp,|s, » pg,s;| =0 for all i,j.

Barrett, Lorenz, Oreshkov, arXiv:1906.10726
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Unitary quantum processes

U Z
TAy...A,, — [-)_,.11|11‘,.Li2u__“;._1,}1 | Aout® _,-1011(.3,,_,1uul ] = PA A A, |A1 Ao Ay
U
Aot tT Azout*I A out*T
n
A1in I Azin I Anin I

Note: some of the input and output systems could be trivial (1-dimensional)
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Direct cause-effect relations in a unitary process

Node A is a direct cause of node A, iff there is influence from AP"'*to A" through U1 .

)z

A out *T

A1in T

The directed graph of cause-effect relations between the nodes:
causal structure of the unitary process

In arXiv:1906.10726, we considered only cases where the cause-effect relations form a DAG!
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Compatibility with a DAG

A process operator is called compatible with a DAG, iff it can be extended to a unitary
process as sketched below, where the unitary obeys the following no-influence conditions:

1) no influence between nodes if no edge in the DAG
2) A;can influence at most A, and F (as sketched)

F in
A €T
) U
A, out* T ‘,” Agout * I A out* I
A1in T ,’: Azin T ,'; I“‘ Anin T
oA s S
P PXo e PAn

Pirsa: 19120019
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Markov condition

Given a DAG on a set of nodes A, ..., A,, a process operator 0 A;...A,, is called
Markov for it, iff

A{...A,, = | | PA;|Pa(A;)
2

(The operators LA, |Pa(4,;) describe channels and commute pairwise.)
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Central theorem from arXiv:1906.10726

Equivalence of Markovianity and compatibility:

A process is Markov for a DAG iff it is compatible with the DAG.

Furthermore, a unitary extension of the following form can be found:

T
P
|
Una
.-1“1 ‘ 1
U,
I
| I] : A ]‘_Vn |
O
‘_J - 11‘)
| -
U,
| TA
| AR
U
| )\1
\l,.r‘
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Quantum causal model (Definition)

A quantum causal model is given by:

1) a DAG
2) a set of quantum nodes A, ..., A, corresponding to the vertices of the DAG,
and a set of CJ operators of channels PA;|Pa(Aa,) that commute pairwise.

The product 0A;...A,, = | | PA;|Pa(A;) defines a process operator.

2
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For notions of conditional independence and their link to causal structure,
see arXiv:1906.10726.
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Observation:

The notion of causal relation defined as influence through
unitary channels is applicable to any unitarily extendible process.

However, for processes that are no compatible with fixed order of the
nodes, the causal structure would include cycles.

Pirsa: 19120019
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Proposal:

Drop the restriction of acyclicity of the causal structure.

With R. Lorenz and J. Barrett,
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Generalized quantum causal model (Definition)

A quantum causal model is given by:

1) aDG
2) a set of quantum nodes A,, ..., A, corresponding to the vertices of the DG,
and a set of CJ operators of channels £A,|Pa(A;) that commute pairwise,

suchthat 04,..4, = | | PA;|Pa(A,;) defines aprocess operator.

2
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Generalized quantum causal model (Definition)

A quantum causal model is given by:

1) aDG
2) a set of quantum nodes A, ..., A, corresponding to the vertices of the DG,
and a set of CJ operators of channels £A,|Pa(A;) that commute pairwise,

suchthat 04,..4, = | | PA;|Pa(A,;) defines a process operator.

/
/

Generalized Markov condition

Remark: Similarly to arXiv:1906.10726, we can define cyclic classical split-node models
(which reduce to cyclic classical models).
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Not all DGs admit faithful causal models.

Example: "

.

P \
A B
However, the following larger graph admits: &_,//
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Theorem:

Compatibility = Markovianity

Proof: Same as for DAGs (arXiv:1906.10726)

Note: Every unitary process is compatible with its causal structure.
Similarly, for every deterministic classical process map.
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Conjecture:

Markovianity = Compatibility?

Remark: There is always a unitary dilation of the process to a unitary channel
with the required no-influence properties. The question is if this dilation
is a valid process.

(An analogous conjecture stands for cyclic classical split-node models.)
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Examples of cyclic quantum causal models

The quantum SWITCH:

T JP out *

Causal structure of the quantum SWITCH
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Examples of cyclic quantum causal models

The quantum SWITCH:

Subsystem structure — a finer-grained description of ‘information flow’

oS

(Dot formalism by Barret and Lorenz)
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Examples of cyclic quantum causal models

Deterministic noncausal classical process by Baumeler and Wolf):
X in = —1X30”t AX out

= t t . . i,
Xg" = 1 X A X o Violates causal inequalities.
Xcin = — XAout AXBout

XA"’“‘ T T XBout Xcout

Bameler and Wolf, NJP 18, 013036 (2016)
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In the acyclic case, every causal model has a physical realization:
it can be thought of as arising from a unitary quantum comb with
the corresponding causal structure.

Could cyclic QCMs admit a physical realization too?

In particular, do all unitary processes have a physical realization?
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Remember that all unitary extensions of bipartite have
realizations on time-delocalized subsystems (arXiv:1801.07594).

Using tools from the causal model perspective, we can show

Theorem: all bipartite processes that obey the unitary extension
postulate are causally separable.

Hence, their unitary extensions are just variations of the quantum
SWITCH.
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Proof

T Fin
. . - Aout * | Bout*
Consider the unitary extension: »
Ain T T Bn
| |
T pous

We have the following no-influence constraints for this channel:

TBIn T Fin TAin

N AR
- 1 ~

. -

.~ -
| ~ -

P
|(‘L[ i
- ~

1 o “
1 s ~
] -

TAOLH * T P('Jlﬂ * TB out *

This follows from the types of terms permitted in a process matrix.
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Consider the reduced process obtained by tracing our F:

-

TB'" TA“" TBin 1 Ein TAln

N AW
- 1 ~

1 I - -
1 | hr— 1

- ~ ;
— P _—
- ~ #
- 1 | o ] > <
e 1 p— | L S 1 L ~
- 1 — ] - ~ 1 - ~
- - ~ - ~
- ~
-

~
1 ~ - 1 | - ~ 1
~ - - ~

TA out * T PUUl * TBOUT * TA out * T POUt * TBUU‘ *

Let U ABP denote the reduced process operator (the CJ operator of the channela).

Then, there exists a decomposition ‘Hpmu* = @ (HL,- & (HR;
I

such that (TAB[) = @ F)Binleul*L"_ ® ‘)Ai"|BOUI*R,‘

l

[J.-M. Allen et al., PRX 7, 031021 (2017); J. Barrett, R. Lorenz, O. O., arXiv:1906.10726]
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The previous theorem has striking implication for the
realizability of unitarily extendible tripartite processes!
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Theorem. All tripartite unitarily extendible tripartite processes,
including their unitary extensions, have realizations on time-
delocalized systems.

This includes processes violating causal inequalities!

With J. Wechs, C. Branciard, in preparation.
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|dea of proof

F’T ¢
/

variation of the quantum SWITCH on Alice and Bob
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|dea of proof

F’T ¢
/

variation of the quantum SWITCH on Alice and Bob
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There is a universal way of implementing all such processes,
such that Alice and Bob act on fixed time-delocalized systems:

(ancillas suppressed)

Time
C,
I
Us
L U Charlie’s operation is within the
A | comb around Alice and Bob.
C, The systems it acts on can be
found similarly to the bipartite
N Ug case.
G
|
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There is a universal way of implementing all such processes,
such that Alice and Bob act on fixed time-delocalized systems:

(ancillas suppressed)

Time
Cy
I
Us
L U Charlie’s operation is within the
a | comb around Alice and Bob.
C, The systems it acts on can be
found similarly to the bipartite
N Ug case.
G
|
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Example: The Baumeler-Wolf process

XAin = o XBout AXCout

Xg" = 2 XM AX 0 Violates causal inequalities.
Xcin = — XAout AXBout z T
X,ou T T Xgout Xcout
Uu
XA in T T XBin xcin

Admits unitary extension [Araujo et al., Quantum (2017)]
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From Julian Wechs:

o [V U

15

£

)

O— Pt —o
l
— <O

Closely linked to circuits previously found by Araujo, Guerin, and Brukner, PRA (2017),
and Guérin and Brukner, NJP (2018).
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What does a violation of a causal inequalities imply?

S
X ot . X out
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There are time-nonlocal classical variables with the following properties:

1) They form a cyclic causal model as illustrated above (which can be tested).

2) Under the assumption of free choice and closed laboratories (no causal arrows apart
from those shown), the correlations cannot be explained by dynamical causal order.
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Summary and questions

e Cyclic quantum causal models offer a causal perspective on a large class of
processes beyond those compatible with a fixed causal structure.

* There are ‘exotic’ cyclic causal models that have realizations on time-delocalized
nodes!

* Does Markovianity imply compatibility in the cyclic case too? What about
unitarily nonextendible processes?

* Applications of causally nonseparable processes on time-delocalized nodes?

* Can the cyclic QCM perspective be useful in the context of quantum gravity?
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