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Abstract: Our earlier findings indicate the violation of the 'volume simplicity' constraint in the current Spinfoam models (EPRL-FK-KKL). This
result, and related problems in LQG, promted to revisit the metric/vielbein degrees of freedom in the classical Einstein-Cartan gravity. Notably, |
address in detail what constitutes a'geometry’ and its 'group of motions' in such Poincare gauge theory. In a differential geometric scheme that | put
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Context and motivation

1  Classical gravity: Riemannian metric, fluxes and connection(s)

2  Quantum geometry in LQG. Simplicity in the Spinfoam approach
Extended phase space
Geometry in gauge theory

1  Locally Klein bundle
2  Cartan connection, ‘osculation’ and development

3 Generalizaed tensors. Universal covariant derivative

Outlook on quantum kinematics and dynamics

1 Generalized configuration space of connections

2  Geometric significance of Einstein tensor and conservation laws
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Classical gravity: metric formulation

» Spacetime picture (covariant)

e Mathematical model: (M, g)/Diff — Riemannian geometry
e The physical content of General Relativity (derived from Sgy(g] = [ R(g))

| I C. . ’
R — §,If,g?._.j p I (Einstein eq.)
N “ 7 N, e’

E;; tensor (curvature)  energy-momentum (source)

» Hamiltonian dynamics (canonical)

e (ADM) — hypersurface (3+1)-foliation picture M = R x §,
initial value problem with phase space variables (g, K)

e (Dirac) — phase space constraints ¢’ (¢, K') ~ 0

¢, :=D,K" —D,K" ~0 (contracted Codazzi eq.)

[

¢, = (trK)* —tr(K?) + Y R~ 0 (Gauss' th. egregium)
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Classical gravity: connection/flux (re-)formulation

» The idea is to present GR in the form of gauge theory, with well established quantization

e The curvature is that of Levi-Civita connection I' ~ dg on the frame bundle L(M)

e The covariant approach is modelled on (6,w) : TL(M) — (V,h)

ds* = (0 ®0) = {n,;0"0" }, and  w(:) = (I0()) = {I'",,0"}

e The action S[f,w] = [((x+~7"1)0 A 0,9), with Q = dw + 5 [w A w] (* - Hodge dual)
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Classical gravity: connection/flux (re-)formulation

» The idea is to present GR in the form of gauge theory, with well established quantization

e The curvature is that of Levi-Civita connection I' ~ dg on the frame bundle L(M)

e The covariant approach is modelled on (0,w) : TL(M) — (V,h)

ds* = (0 ®0) = {n,;0"0" }, and  w(:) = (I0()) = {0}

e The action S[f,w] = [((x +7~1)0 A 0,9), with Q = dw + 5 [w A w] (* = Hodge dual)

» The canonical theory is reduced to hypersurface S3 C M and so(3) = R? bundle

e The variables are Ashtekar-Barbero su(2)-connection and conjugate momenta-fluxes

A=T[0]+~K, and B=3x0A0), st {AB}=xl

e The action S = [(BfAL — #) , where # = N€, + N6, + Ay,
= GR ~ Yang-Mills with Gauss law ¢, = D,B¢ ~ 0

+ additional ADM constraints (greatly simplified)
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LQG in a nutshell: regularization with holonomies

» The connection representation on L?(.A, du) of wave functionals
Ax)W[A] = A)W[A],  B(y)u - - [A(x), B(y)] = ih6*(x, y)
Constraints C'W = 0 express the invariance, e.g. W[A9] = U[A] for Gauss.

» Partial configuration spaces A = SU(2)LCl ‘Cylindrical’ functionals on A = 1|i|11A|~
(7

(w.r.t. poset I' < I") project on graphs to Wr[A] = ¢ ({he[A]},., )

=

Gauge-invariant subspace is spanned by ONB of spin-network states

Ur g Al = @) tn &) DI (hy)
mn ¢
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Discrete geometry of space

» Conjugate momenta are smeared over complementary 2d
surfaces of a dual cellular decomposition

By —/ he B —  fluxes
J g,

By the action on Ap = quantized as angular momentum,
determine the eigenvalues of area B'f x Je(ge + 1)

» The collection of ‘fuzzy' polyhedra, glued along their faces, describe quantized 3d space

Unresolved issues (or raising concern)
-> How to recover spacetime? The dynamics is complicated: C‘L\IJ = 0 4+ ambiguities

=> The significance of discrete configurations: twisted/spinning geometries are
discontinuous/torsionful [Freidel Speziale, Ziprick]. Bug or feature?

Page 8/43



Pirsa: 19120014

Discrete geometry of space

» Conjugate momenta are smeared over complementary 2d
surfaces of a dual cellular decomposition

By —/ he B —  fluxes
Js,

By the action on A = quantized as angular momentum,
determine the eigenvalues of area B'f x Je(ge + 1)

» The collection of ‘fuzzy’ polyhedra, glued along their faces, describe quantized 3d space

Unresolved issues (or raising concern)
-> How to recover spacetime? The dynamics is complicated: (:‘L\IJ = 0 4+ ambiguities

> The significance of discrete configurations: twisted/spinning geometries are
discontinuous/torsionful [Freidel Speziale, Ziprick]. Bug or feature?

Page 9/43



Spin Foams in a nutshell: quantum spacetime

» Imagine the space-slice W ;, ,, evolves in time continuously:

— links sweep faces f, nodes sweep edges ¢
— the coloured 2-complex (K, j,te) is a spinfoam

— branching vertices correspond to elementary interactions
[Iwasaki'95;Reisenberger,Rovelli'07;Baez’'98]

» In general, SF amplitude functional Z. : H_ 5 — C

Ze = HA;HA HA,,

Jfate

» QGisexactin3d: S = [(BAQ), B=x0 — topological BF theory

l = Z H”,” H Jee / dp(j) exp (iSr)
! S —
{67} (y)

— [Ponzano,Regge'68] state-sum (discrete partition function)
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SF from path-integral: “first quantize and then constrain”

e Manifestly 4d (re-)formulation: S = [(B,Q) + A*Cy|[B]

e

o Cu[B] =0 restricts summation over {ps,te}: only states with B = % A 6 contribute

=>» Instead of ‘dynamical’ constraints —

(“reduction to GR" for some E; = [, 0)

Expectation is that the shape of a polytope P C IR? is encoded in the boundary

v" The induced boundary H,,- can be made to match LQG, s.t. (Z|V) = IA[ dur Z[h)¥|h]

v Justification from Regge asymptotics (j — o0) [Barrett;Conrady,Freidell

.h” i "l".
X Independent areas 7 => flatness problem: | () " =0 [Magliaro,Perini;Han]
—
X Diffeomorphism invariance broken by discretization [Bahr,Dittrich'09]. Continuum limit via
refinement [B,D,Steinhaus], or summation [Group Field Theory]
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Simplicity constraints: main objectives

» The meaning: coord. of the (ordered) wedge-product of 2 vectors define a plane element

S=XAY = L¥ii(e, A N — Xiyd — yixi — Xty
a T2 (i Aej), - B TXT Y

NB: Not every skew-symmetric 2-tensor is simple/planar (shape is left unspecified)

A
f, (a)
o \ N, w
» [Plebanski'77;BC'98] quadratic constraints for triangulations '\~ / \ /.«-""\ 2l
\. f;" N "‘-‘\l‘ )
\ ol "h//'\,
; VA

Al
Is "

v 'Diagonal’ and ‘off-diagonal’ (tetrahedral) constraints
*B.f' . B,f' =0 V[, *B.f' . B,f" -0 VN j-! .

X 'Volume' constraint By - By =: Vi (f, Ji) ViNnf =v

P [Gielen,Oriti'10;EPRL'07;FK'08] linear formulation, with some 4d normals V.
v/ 'Cross-simplicity’ (orthogonality) *Bjy Ve =0 VfDe

X 'Linear volume' constraint Z *Beety  Verr =0 Ve
{e’,e'}He
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(Semi-classical) bivector geometries

» Induced bivector geometry is given by

- the set { B, }ycr associated with oriented links of a graph I' C S%,

— satisfying » [n,6]B; =0, as well as *By- By =0 ,and «B; By =0
£on

» Such b.g. appear in the asymptotics of EPRL-FK-KKL model for general 2-complexes K,
e.g. for rectangular lattice with hypercuboidal boundary data {j;,7,;} [Bahr,Steinhaus'16]

-

with [Livine,Speziale'07] | f-)

__ ) (semi-classically) R*-cuboid
P 2 'H-] A
. — & || >~ j

3
Boundary graph for the vertex amplitude

' E | =~
AT = / dg, e° [!;.,], g+ gl = —— 29 In{—nl 4 (u_lr o
1 . I:[ g [al 9 2 Ji In{ bl9a " gy Tiab)
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The primer of quboids

» Consider { B} forming 3d cuboid at each node: coincide on 6 independent great circles

Bl =ajey Aez, Bas =age. A ey,
By =aqe; Ney, Bs = as et A ey,

» 3 ways to form volume (if aja¢ # azas # azaq):

] 1 ]
V:,,I = ;(uru;, 't/".,‘r'2 = qu.gur,, V.”f:; = G(L;;(M

[ * *

» Shape-mismatched configurations do contribute to
KKL-asymptotics [Dona,Fanizza,Sarno,Speziale'18], and
the physical states may possess torsion

i — 1 ) m '.3 e ]
r |2}y ~ €™ olTI7 T2 = L(dy + do — dg — dy)
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Problem with the EPRL-model

» The case of 4-simplex: closure is sufficient

2> xB(A12) - B(Aus) + *B(A13) - B(Aas) =
— % lf(A||) ’ lg(Ap',) — *13(A|5) . ]f(/_\lr)) = ()

= Reconstruction theorem [Barrett et al.’98'09] in terms of face bivectors

» Not applicable to arbitrary polytopes (hypercuboidal
counter-example leads to tautology

*xBij+ By = —* Bji - By, 1,5,k = x,y, 2)

Failure to define ‘volume’

- Part of constraints is not implemented properly

=> No reduction to GR for higher valence graphs

» The source of a breakdown: ‘cycles’

Crossings carry information
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Towards quantum 4-volume

» Trace the origin of missing condition(s) to the embedding of I' C S*

— I' stereographically projects to R?, and then to R? with
crossings

— Crossing number o((C) = £1 depends on orientations of ¢

: 1
» Define the Hopf-link volume Vi := ?()'((') *x (B1 A Ba), Vy = Z Ve @
)
COM

‘H — subset of edges which form two linked (non-intersecting) cycles when embedded in S

v" The 4-polytope total volume in terms of 2d faces Vp = Z Ve and Vi, are

independent of the projection = properties of b.g. only (and choice of #) [Bahr'18]

Hopf link volume-simplicity constraint (conjecture)

Vi is independent of the choice of Hopf link # in I’
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Fully linear treatment

» 4d normal V. = / ¥ is dual to 3-form I =xO AO A O

JTe

- Norm |V.| has the meaning of 3-volume

=>» Linearized volume constr. requires closure E V,’.f‘ = 0 Vv for 4-simplex
e v

» We applied [Gielen,Oriti’10] beyond triangulation

Z *Bij Vi =0 Vk

{i,7}#k

| Results in proportionality

= |E;| = |V;|/|Bii| independent of i (heights)

= |Ei||Bal = |E;||Bji| = |Ex||Bri| Vi, k #1
(3-volume)

» Suggestive to pass to I/, = [, 0 (by duality)

Vanishing torsion D = 0 = closure (no e.o.m.)

14 /32
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Poincaré-Plebanski formulation

Extend the phase space by including @-variables (and corresponding momenta)

-> The relevant TQFT ansatz:  So = [ By; A QL 4 By, A Dwgk

=> Add simplicity constraints (e.g. with Lagrange multipliers \)

B=x9A0 < Sym(Bj;® 6”) =0 (dual linear version)

» Geometric meaning: existence of 3-volume B;; A 07 = (*xONONO), = V; ("pyramid”)

investigated this Poincaré-BF with  s0(3,1) x p*! 5 w:=w+60 and B:= B+

EOM: QW =0, Dwpk =0, DBWY —gli Apil =0, Dpk=0

gauge symmetries from Noether id-s: w — g ' (w+d)g, B — Ad*(g9)B

generalized topological symmetry:  dw =0, 68 = (DEY — 0" N&T) ¢ it DERP,

reproduced in canonical formalism with gauge generator(s) G and 1st class algebra
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» Complementary (in continuum) to ‘higher gauge theory/BFCG' with 2-connection w + 3

[Girelli, Pfeiffer, Popescu'08;Baratin,Freidel'15;Mikovié,Oliveira,Vojinovié'16;Dittrich et al'19]

» Complications seem to be rooted in the primacy of area-variables: embracing the & brings
us closer to metric GR

» Klein geometry (M, z) ~ (G/H,, associated to any ‘group of motion’ (acts transitively),

naturally corresponds to homogeneous Minkowski spacetime, thereby elevating the earlier
‘flux formulation’ based on |2 = 0)-state with just H-invariance [Dittrich,Geiller'15]

We need to come to terms about the “gauge potential of translations” 6:

Is not the local symmetry broken down to H by curvature in GR? How diffeomorphisms arise in
gauge description? What is torsion © = D“@ geometrically, and how to discretize it?
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Recap: gauge theory basics

» The arena for fields

=1 (U) © S UXF

e Bundle 7 : ¥ — M with standard fiber F' is locally trivial \ / :
m proj
U |

F'is a (G-module on which Lie group acts smoothly. Then transition functions
(Ua NUg) X F 3 0q05" (,f) = (w,808(2)f), s(z) €

determine the G-bundle by “gluing” E = J,(Ua x F)/ ~.

Principal bundle with P, = 7~1(2) ~ G is determined by right R4-action. Then

(U, 0) G(x) =0 '(x,e) € Py & o(pg) =o(p)ged
» (Ehresmann) connection on p.f.b. lifts curves v € M to P horizontally

(i) by specifying smooth distribution of tangent subspaces
complementary to (canonical) vertical fields

TP=VP®HP, VP := kerm,

(i) satisfying right G invariance Ry« (HpP) = Hpy P
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General knowledge: manifolds

» Smooth M “looks like" Euclidean space in the local chart

p:U—E™, st pop; €C%

. affine structure [ + V — [ allows differentiation

» (“External”) linear frame bundle LM = U {us} at z = !
reM

TE=2ExV — TM
(”'a V) = X.r:(u.) € ,I?:.'(u.)M'

= P, ~ GL(V) (or its subgroup H) by R ,(u) =uo A, A€ H

Commonly, the gauge group is " H+diffeos”, where Diff 5 ¢ : M — M is bijective C'°*°-map.
What happens to the “internal”’ V-action in gauge description?
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Affine spaces and bases

Basic idea: the points-positions are made relative (“radius vector” w.r.t. any other point)

» Group GG =V x H acts freely and transitively on affine bases
(o',¢) = (0,e)g = (o+a,ed), g=(aA)

- principal homogeneous space (torsor) P x (G — P. Factors downto M & GG/ H.

» Customary model: (2" = 1)-hyperplane in R™*1 with linear matrix representation

. (1 0 T/,
G = (V ”) C GL(m+ 1,R)

Points: a4+ b ¢& M, but (b —a) € V - free vector

» '‘Bound’ or ‘sliding’ multivectors: X, =e, +x = Z}(("") = XogAX1 A A X

Particle at x with velocity X has E((,') = X'(egNe;) + 5(:::")(-’ -/ X")e; Ne,
N, — :

N 7

angular momentum

linear momentum
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Locally Klein bundle

» We want to actively use affine M. Consider x := (¢,Id) 0 ¢ = (¢, o), where ¢ = 7*@

\

U=Plg=n"Y0) —-— 6 x H < >

NJ' ll”‘“.i | 1"”(.'
/

U y & C EM ¢ y G/H

Klein G structure (def.)
Let 7 : P — P/H. Specify an atlas X = {Uq, ka} of Klein charts k: U = k(U) C G

(i) satisfying right G equivariance k(pg) = k(p)g

(i) with G-valued transition functions H,”H,El : Kg(Ua NUB) = ka(Ua NUpg)

= Group manifold P = U Ka(Uwn)/ ~, with bundle structure induced from 7w : G — G/H

=> (Full) gauge symmetry G(P,X)={f: P — P|f(pg) = f(p)g} uniquely corresponds to

C(P,G)={1: P = Gl|r(pg) =9~ '7(p)g}  via  f(p) =p7(p)

=>» Reductive geometries [h, p] C p — vector space p = g/bh as Ad(IH)-module (Poincaré, dS).
Works for any group of motions (e.g., conformal, projective geometries, etc).

20/ 32
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Connection as parallelization

Underlying logic: “borrow" all kinematics from the model space M, including admissible frames

» Parallelization of N/ = trivialization of TN ~ N x W

smooth basis {X1(p),..., Xn(p)} C TN < Bp : TyN 5 W - linear isomorphism

» Every Lie group is naturally parallelizable by (left) GG action

Ly-1,: TyG = TeG = g-valued (canonical) Maurer-Cartan form wq = ¢

Induced parallelism on (P, X) via pullback  (k*w¢): TP =% TG 24, g

We call fundamental vector fields on (P, X)

W
XWV =

1
; (pexp sW) €T,P generated by W eg=pdbh

e 8=0

N(XW) =W = const - left-invariant fields in the local gauge

—ldg
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Underlying logic: “borrow'" all kinematics from the model space M, including admissible frames

» Parallelization of N/ = trivialization of TN ~ N x W

smooth basis {X1(p),..., Xn(p)} C TN < Bp : TyN 5 W - linear isomorphism

» Every Lie group is naturally parallelizable by (left) GG action

Ly-1,: TyG = TeG = g-valued (canonical) Maurer-Cartan form wq = ¢

Induced parallelism on (P, X) via pullback  (k*wg): TP =5 TG =G g

We call fundamental vector fields on (P, X)

W
st

1
; (pexp sW) €T,P generated by W eg=p @b

o s=0

N(XW) =W = const - left-invariant fields in the local gauge

—ldg
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Connection as parallelization

Underlying logic: “borrow'" all kinematics from the model space M, including admissible frames

» Parallelization of N/ = trivialization of TN ~ N x W

smooth basis {X1(p),..., Xn(p)} C TN & By TyN = W — linear isomorphism

» Every Lie group is naturally parallelizable by (left) GG action

Ly-1,: TgG = TeG = g-valued (canonical) Maurer-Cartan form wg = ¢
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Cartan connection

g-valued 1-form on (P, X) determines infinitesimal parallelization @ : T'U — g in local charts:

(i) w(XW)=Weg (point-wise Maurer-Cartan for each p € P)
(i) (R})w=Ad(g"')w forallge G

=> Unlike Ehresmann conn. ker @ = 0. Unlike [Sharpe'97] covariance (ii) w.r.t. full G (not H).
-> Transforms under f € G(P, X) as f*w =711 (w +d)r for 7 € C(P, Q).
= Introducing the split w=w+0 €€g=pDbh — horizontal and vertical distributions

T,P=H,P®V,P, HP=kerw, VP =ker0

Should not the (finite) connection be about lifting curves horizontally?
And then €2 measures non-involutivity?
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Development along paths

For a finite separation, choose intermediate frames and perform matching step-by-step

» Pull back the osculation eq. to I by a piecewise smooth path ~ : (/,s;,s;) = (P, pi,pj)
with §(s) = v« (9s) € T'y(5yP. The (unique) smooth map

(ky): (I,s0) = (G, g90),
s > (a, A)(s),

satisfying ordinary differential equations

Vw(@s) = (k7)*wa(Ds)

is called the development of = on (G along ~ starting at gj.

=> Non-homogeneous V'-part generalizes I{-holonomy to points and bound multivectors.
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» From the properties of development => K behaves as covariant functor from the
path-groupoid to GG (w.r.t. o and —1)

» The right covariance (kvh) = (ky)h w.r.t. h : I — H allows the projected vy = 7 (k7)
development of the path %:/ - M=~ P/H on M ~G/H

=> Curves that develop to m¢-projections of left (7-translates generalize autoparallels to
arbitrary groups of motion (straightest paths, or ‘circles’)

=> They coincide with shortest geodesics ¢ / 0 = 0 of Riemannian geometry
J1
(if 'vector torsion' is vanishing)

We propose this notion of development as a natural regularization tool for QG

26 /32
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1l Outlook on quantum kinematics and dynamics

1  Generalized configuration space of connections
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How is the gravitational field encoded in the language of Cartan connections?

» The momentum of p-particle v : I — IM remains constant in the absence of interactions

) da’ . d2xt L. ) o

P=pdm(d) =p— e, P=ypy——se, =0 (‘principle of inertia')
ds ds?

or is changed by the action of (grav.) force P=g (‘mechanical law')

» In concordance with ‘relativity postulate’, write in the covariant form

dz — dm = 0, d/ds = V5 (with integrable connection of M)

Invariant content: curve will develop into straight line iff  6%(%) + W' (4) 07 () = X 6*(¥)

‘Equivalence principle’: the parallelism of freely-falling observers is modified by g (on the level
of geodesics), s.t. new coefficients o = @ + w are non-integrable. Including torque and
‘momentum law’, the modified dynamics expresses the preservation of the sliding vector

dmAP) = (mAe;)[dP' + w";.,j- AP+ (e; A e‘,}-)[()"" AP =0

29 /32
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Quantum connections?

Our main assertion: the fundamental local d.o.f. of the gravitational field are provided by
(non-integrable) Cartan connections. We advance the quantum theory based on these variables.

What could it look like?

The configuration space_ﬁ of generalized (distr.) connections in LQG arise as the spectrum of
holonomy C*-algebra Cyl(A) = C(A), and characterized algebraically as Hom (Y, SU(2))

=> Our constructed mapping x from paths in (P, X) to (i extends it in a natural way

=> Lacking is the description in terms of projective construction. What are the partial conf.
spaces and their discrete geometry? QOur spacetime connection being Lorentz and
translation covariant, it is suggestive to consider the graph regularization in 4d.

= (Non-binding) particle picture: straight developed autoparallels correspond to “free
motion”, the “interactions” happening at the vertices (‘“spacetime coincidences").

Note: one could gain better control over diffeomorphisms in discrete, which correspond now to
regular shifts (of “internal” space) df(m + sq,e)/ds = —p.(q)f(m,e), p«(e;,) = —0;
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» ‘Cartan moment of rotation’
P |
K(OAQ) =& B d°%, Bij = Rij - Re;
— '‘geometric representation of the physical vector of energy-momentum’

Construction: take (bivector of) rotation associated with elements (at m) of So = 9S543,
enclosing small 3-volume around a; take a sum of projections onto hyperplane 1L (m — a)
(of the duals, essentially J of SO(3)), multiplied by |m — al.

» Has the structure of the Pauli-Lubanski vector, if @ +— P €p, Q2+ T € b

I ”
K(QAO) = W=x(TAP), Wi = 55.,1‘_,-,,;;.7-7"-73‘

» (Non-binding) mechanical analogy in 3d: writing do = *3 = («, 3,7v)do for the cycle,

*Q = (p,q,r)do for associated rotation and K;; = 3¢, Q' e}.'”‘”‘ for the “double
dual” of the curvature tensor, then relations are identical to the formulas of elasticity.

Conservation laws then express the medium in equilibrium.

Z

Qp.qn)
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