Title: Aspects of non-perturbative unitarity in Quantum Field Theory
Speakers. Alessia Platania

Series. Quantum Gravity

Date: December 04, 2019 - 3:30 PM

URL.: http://pirsa.org/19120013

Abstract: According to the Asymptotic Safety conjecture, a (non-perturbatively)
renormalizable quantum field theory of gravity could be constructed
based on the existence of a non-trivial fixed point of the

renormalization group flow.

The existence of this fixed point can be established, e.g., viathe
non-perturbative methods of the functional renormalization group (FRG).
In practice, the use of the FRG methods requires to work within
truncations of the gravitational action, and higher-derivative operators
naturally lead to the presence of several polesin the propagator. The
guestion is whether these poles represent areal problem for the

unitarity of the theory.

Using QED as aworking example, in thistalk | will discuss some aspects
of non-perturbative unitarity in Quantum Field Theory. | will show that
theinclusion of quantum effects at all scalesis of crucial importance

to assess unitarity of field theories. In particular, poles appearing in
truncations of the action could correspond to fake degrees of freedom of
the theory. Possible conditions to determine, within truncations,

whether a pole represents a fake or a genuine degree of freedom of the
theory will aso be discussed.
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Motivation

- Einstein-Hilbert gravity: unitary, but perturbatively non-renormalizable

- Quadratic gravity is a renormalizable theory, but has one massive spin-2 ghost

S=- /d4w1/—g {yR + aR,, R" — BR?*}

o Stelle, PRD 16 (1977) 953-969
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- Quadratic gravity is a renormalizable theory, but has one massive spin-2 ghost

S=- /d4w1/—g {yR + aR,, R" — BR?*}
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- Asymptotically Safe Gravity:

— Perturbative approaches could fail in the description of the UV behavior of a theory

— Gravity could be non-perturbatively renormalizable
Weinberg, 1976
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Motivation

- Einstein-Hilbert gravity: unitary, but perturbatively non-renormalizable

- Quadratic gravity is a renormalizable theory, but has one massive spin-2 ghost

S /d‘im, /=4 {+R + aR,, R" — BR?}

Stelle, PRD 16 (1977) 953-969
- Asymptotically Safe Gravity:

— Perturbative approaches could fail in the description of the UV behavior of a theory

— Gravity could be non-perturbatively renormalizable

_ ' Functional (non-perturbative) RG

% — Fixed points of the RG flow:

+  GFP — saddle point

Type Ta GFP. Type 1Mla . «  NGFP — UV-attractor
™~ O\ )\ | Type 111 — Extended truncations:

TypeTh ' M. Reuter, F. Saueressig . ,
\\\\ i T(( ( ( Phys. Rev. D65, 065016 3 relevant directions 6
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+  GFP — saddle point

*  NGFP — UV-attractor

+ all operators allowed by symmetry

» Extended truncations:

* 3 relevant directions 9
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Motivation

- Einstein-Hilbert gravity: unitary, but perturbatively non-renormalizable

- Quadratic gravity is a renormalizable theory, but has one massive spin-2 ghost

S = - /d‘lm,/—g {yR + aR,, R" — BR*}

Stelle, PRD 16 (1977) 953-969
- Asymptotically Safe Gravity:

— Perturbative approaches could fail in the description of the UV behavior of a theory

— Gravity could be non-perturbatively renormalizable
Weinberg, 1976

Non-perturbative effects could be important for the understanding of fundamental
properties of quantum field theories, such as renormalizability and unitarity

Non-perturbative unitarity: Although quadratic gravity has a ghost, quantum effects could make the

ghost unstable, thus restoring unitarity Salam, Strathdee (1978)

E. S. Fradkin, A. A. Tseytlin (1981)
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Unitarity

Unitarity condition

StS =1 S=1+iT

1
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Unitarity

Unitarity condition

StS =1 S=1+iT

Optical theorem

2 2Im{T} = TTT > 0

12
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Unitarity
Unitarity condition
St§=1  S=I+iT

Optical theorem

: 2Im{(f|T|5)} = (f|T T3 S

/ T'Hooft, Veltman (1973)

14
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Unitarity

Unitarity condition

Sts =1 S=1+iT

Optical theorem

2Im{(f|T|i)} = (f|T'T}i)

Y
If the space of asymptotic states contains ghosts Jii
(mln) = (=1)%bnn  “17=3,(-1)*|n)(n|

= Loss of physical unitarity ’
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Spectral representation and unitarity

Spectral representation

1 ) For a stable particle, the
=1 f dp? p(¢*) = =Im{iA(q*)} spectral density is a
q* — p? + i€ . Dirac delta

17
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Spectral representation and unitarity

Spectral representation

1 ) For a stable particle, the
=1 f du P(qz) = ;Im{iA(q )} spectral density is a
q* — p? + € Dirac delta

- Propagator

[ E B i g
A(qz)—z{z’;qz m§+2(q2_(..2)+q2_(..2),,)+/,,.,,,q — u}

18
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Spectral representation and unitarity

Spectral representation

1 ) For a stable particle, the
= zf du P(qz) = ;Im{m(q )} spectral density is a
q* — p? + € Dirac delta

- Propagator

O 3 R* © gy
A(qz)=i{;qzﬁ"m§+2( Rn~2)+q2—}:nm2)*)+/m —(”)201;»2}

v/ / i

Real poles (stable particles) Complex poles Unstable particles

19
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Spectral representation and unitarity

- Spectral representation
For a stable particle, the

v) Y Bt P(ﬂz) 2 1 . 2 e
A(g”) =1 d p(q”) = —Im{iA(q")} spectral density is a
1 i 2 . T .
0 q° — p© +e Dirac delta

- Propagator

A - ~
L R, £, ® o) g
A(qz)—%{;qz 2+Z(q2—(7ﬁi)+qz_(ﬁ12)*)+/mz qz_pzdﬁ}

Complex poles
X P Unstable particles

Salam, Strathdee (1978), Fradkin, Tseytlin (1981) 20

Donoghue, Menezes (2019)
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Spectral representation and unitarity

- Spectral representation
For a stable particle, the

v) [T, P(ﬂ2) 2 1 . 2 o
A(g”) = zf du . p(q°) = —Im{iA(q")} spectral density is a
0 q* — p? +ie T Dirac delta

- Propagator

i R, R, -t
Alg?) =z{§2q2_—2+2 (qe —m) @ (mi)*) +[m= z fﬂzdﬁz}

M w

v / i

Real poles (stable particles) Complex poles

p=3,Rud(g® —mi) R.20

;
\ A(g?) = A =
S - S8 - )
n \/ If
Bare Dressed seli-energy
propagator propagator

Salam, Strathdee (1978), Fradkin, Tseytlin (1981)
Donoghue, Menezes (2019)
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Functional Renormalization Group

Solving the quantum theory is equivalent to solve the functional renormalization group equation

M. Reuter. Phys. Rev. D. 57 (2): 971 (1998)

kO, T) = %STr { (F.SS) + Rk) ! kakRk} C. Wetterich. Phys. Lett. B 301:90 (1993)

O

23
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Functional Renormalization Group

Solving the quantum theory is equivalent to solve the functional renormalization group equation

-1
kO, T\ = LSTr (p(z) + Rk) kO Ry, C. Wetterich. Phys. Lett. B 301:90 (1993)
2 k M. Reuter. Phys. Rev. D. 57 (2): 971 (1998)

Sh

A Fundamental (bare) action, k—

Fast fluctuating modes are
integrated out
T k | Effective action at the energy
scale k

P[] Ordinary effective actlonﬁ k—;O .

24
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2 k M. Reuter. Phys. Rev. D. 57 (2): 971 (1998)
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ShA Fundamental (bare) action, k—w

Fast fluctuating modes are
integrated out

I 5:’;?::*9 action at the energy All terms compatible with symmetry and field
content of the theory are generated

25
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Functional Renormalization Group
Solving the quantum theory is equivalent to solve the functional renormalization group equation

1
kO, T\ = LSTr ([*(2) + 'Rk) kO R C. Wetterich. Phys. Lett. B 301:90 (1993)
2 k M. Reuter. Phys. Rev. D. 57 (2): 971 (1998)

Sh

A Fundamental (bare) action, k—

Fast fluctuating modes are
integrated out

I, | Effectiveactionattheenergy Al terms compatible with symmetry and field
scale k
content of the theory are generated

- All quantum fluctuations are integrated out — non-locality
I’y ordinary effective action, k—0 — Incorporates all quantum effects — fully-dressed quantities
This is the object to use to check unitarity!

26
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Functional Renormalization Group

Solving the quantum theory is equivalent to solve the functional renormalization group equation

1 Problem: Need to work within truncation =
kakRk} higher-derivatives = Poles

koI'y = %STI‘ { (Fg) + 'Rk)

Questions:
- What is the nature of these poles?
- Are these poles removed by quantum effects?

IS - Connection between poles in finite truncation and
bA Fundamental (bare) action, k— poles in the effective action?
, - How do we understand, within truncation, if these
Fast fluctuating modes are f antp
integrated out poles are dangerous for unitarity
I'; Effelct::'e action at the energy _ . All terms compatible with symmetry and field
scale

content of the theory are generated

All quantum fluctuations are integrated out — non-locality
Incorporates all quantum effects — fully-dressed quantities
This is the object to use to check unitarity!

FU Ordinary effective action, k—0

28
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Unitarity in QED

Take the one-loop effective action as a toy model for the full effective action

3r m?, M2

Boulware, Gross (1984)

1 4 [Nz 2 a mtzh B q2 q2
Loep = ~1 d*x {F,, P(C)F"} Plg)=1- —log | ——— My = 2my

29
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Unitarity in QED

Take the one-loop effective action as a toy model for the full effective action
1 4 y 2 « mtzh o q2 q2
Porp = =7 f da {F, PO)F"} Pl') =1- 5 log (T TaE M = 2my
Boulware, Gross (1984)
In this case the propagator has one massless pole and one massive ghost pole

) 9.9
Aaﬁ(q2) - Cyy . {naﬂ - q_zﬂ}

(]4’ .
¢*—3-q" log -7t O —m,)

2
my,

30
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Unitarity in QED

Take the one-loop effective action as a toy model for the full effective action

2 YD)
3r m?, M

Boulware, Gross (1984)

1 4 e 2 Y mtzh —_ q2 q2

It this case the propagator has one massless pole and one massive ghost pole

) 4.9
Aaﬁ(q2) - Cyy . {naﬂ - q—zﬁ}

qtl, .
¢*—3-q" log -7t O —m,)

2
Mih

Absorptive part of the propagator

B

31
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Unitarity in QED

Take the one-loop effective action as a toy model for the full effective action

2 YD)
3r m?, M

Boulware, Gross (1984)

1 4 L 2 o mtzh _ q2 q2
Loep = - d*x {F,, P(C)F"} Plg") =1- —log | ——— My = 2my

In this case the propagator has one massless pole and one massive ghost pole

) 4.9
Aaﬁ(q2) - Cyy . {naﬁ - ?ﬁ_}

q‘l' x
¢*—3-q" log -7t (@ —my,)

M2 th

2
Mih

Absorptive part of the propagator

33
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What happens within truncations?

N
1 [a %]
L= -7 f d*z{F,, P, F"} Pi(2) = 3 onlh) 2=q"/mj,
If all terms
4] are included
a ox z
k=0 P(z)=1—z+§nz=1;El—z—3—log(1—z)
iy

34
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What happens within truncations?

Ly

1 [se]
-3 [ detEL R B =3 em® 2=g/m,

- If all terms
are included

a o 2"
k=20 P(z)=1-—2+ gnzzl; —z—glog(l—z)

Finite truncation of the action (e.g., derivative expansion of the action)

PN(2) —1—z+—Zz—

n

35
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What happens within truncations?

« 2" i
PVz)=1-z24 =) =— z2=¢/m}, a=1 |A(f)
3m e~ n t @ PN (¢2)
2_-1 T 1 T T (—
ol :
S : e Real poles
T ""”'!'II!I e Complex poles
E of E
;;ﬁ OZ Pl Persistent ghost pole at
T | SETECEE A
i d A - 4 2 " 2
© ot .;;;;aiizizzlllllj g = =0l
L A R ) .
[ . ; It is a pole for N odd
_2.- |
o 20 40 e & 100

36
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What happens within truncations?

PN =1- . i — 2 2 _ A 2 N;
(2) z-|—3ﬂ_ S z=q°/mj  a=1 (q°) 2PV (&)

The apparent ghost pole is
generated by the convergence
properties of the function P(z)

Persistent ghost pole at

PN(d?)

ok s
g- o =Ny,

It is a pole for N odd
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What happens within truncations?

i

N .n

e 2
PN —1— et s — 2 2 _ Alg?) ~ —
(2) z+3ﬂ_?§=1n z=q°/mj  a=1 (¢°) 2PN ()

Ing*

The apparent ghost pole is
generated by the convergence
properties of the function P(z)

R — . R 2
- “a S |q3| < n""”&
, ~
’/ \\ B L L A B S
/ A
i \
I \
_?'2' * 2
”’Hn‘ ] ”1”,
\ /
\ /
A /

Unstable ghost lives in . e ‘ L L
the branch cut (cannot i & = . % .
be seen in any

perturbative expansion)

38
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What happens within truncations?

Fake ghost living in the
principal branch of the
Log (not appearing in
the full theory)

Pirsa: 19120013

Unstable ghost lives in
the branch cut (cannot
be seen in any
perturbative expansion)

N _n .
N(5) — L AN E = ¢ /m? - 2o
PY(z) = 3 Zl - z=q"/m;  a=1 |A(g) 2PV (&)
Ing*
The apparent ghost pole is
generated by the convergence
e e properties of the function P(z)
... I [/ I '?H‘.-Ih

20

L
40

I
80

B0

L
100
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What happens within truncations?

Fake ghost living in the
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Log (not appearing in
the full theory)
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Unstable ghost lives in
the branch cut (cannot
be seen in any
perturbative expansion)
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What happens within truncations?

N « il Zn 2 2 Ty’
PY(z)=1- 3—;; z=q°/m;  a=1

-1 = N e ol
o S U R
~

The answer lies in the residue! | \

27 2 .
“Mg 1y, Rog?

0.000[

-0.005 | .

-0.010f

.._-.:;;

..........
[ N A

~0.015}

Res[An(q%)]

[ T

U -
......

-0.020} *® P

-0.025

-0.030 | \ :

0 100 200 300 400 500 N
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What happens if the full theory has a stable ghost?

2 2 2
P q2) — 14 ilog M —9 )\ 4 Flipping the sign of the Log generates a stable
3 m2, M? ghost, living in the principal branch of the Log

42
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What happens if the full the

I‘\i"' |
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ory has a

stable

ahost

Flipping

ghost

L] p.l'.ll |WL‘J'|' -

e Complex poles

\
Two persistent ghost
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What happens if the full theory has a stable ghost?
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2 2 2
a My, — 4 q
P(@) =1+ —log | 22— -
(q°) +3ﬂg( mfn) Ve
z_l T T T — T
o | |
[EEREREREE RN N NN
%0: . :
€ SRR R RRNEE
g -1f cocapbdiaibiiii by
-2 :
_3—|J | | 1 1 |
0 20 40 60 80 100

Flipping the sign of the Log generates a stable
ghost, living in the principal branch of the Log

e Real poles
e Complex poles

Two persistent ghost poles!
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What happens if the full theory has a stable ghost?

2 2 9
P(@) =1+ ilog My, —9 ) 4 Flipping Fhe sign of tl"1e Log generates a stable
3r mfh M? ghost, living in the principal branch of the Log
e 0 S
ongoooototiolll**‘*
Fake ghost . -;r;é;mimml
-0.2f o
= ! 2}
g _
5?_ -0.4 .
53:3 T T . T
N
-06
| True ghost | :
P P Stable ghost in the full theory
— persistent negative residue
0 100 200 300 400 500
N Fake ghost (generated by convergence

properties of P(z)) J;
— residue approaches zero 44
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Similar results are obtained Fictitious Pole Residue
from other toy models for the : : : : ‘ : 000

fully-quantum effective action Tl N SR IRORE LAk R
% i . = =010
2 2 2 ,;{l - | 3 015
P(q*) = 1+ exp(q¢°/M*) ¥ .\ 1
-30 * -0.20
Ghost-free full theory ol R B
(P(z): entire function) T T e e T e T T e e ’ 2 m % %
Truncation: fake ghosts e - —
moyie to infinity, residue o . (R R A
approaches zero .
= i, o 1 _ om0
&
2\ _ 4 4 3 oul
P(q*) =1+ exp(—¢"/M") 5 I
-2r . | —oz0¢
! B . ., 0250 e
Full theory with unstable ghosts A A L
(P has finite radius of convergence) " | , , , ,  om | S N
Truncation: fake ghost moves to I T
boundary of domain of converg., B PE R A reetertree oo
residue approaches zero g; - % sl *
o 3
E r 016+
2\ _ 2 2\1/2 -
P(¢?) = (1 - ¢/M*)Y [
! —6 50 160 1|50 zéu 2;0 —0.250 2‘0 alu alu ;0 u;ru 120 4
N N
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Summary & Conclusions

e We discussed unitarity from the point of view of the Functional Renormalization Group

2 (et ———r Pttt t———

e Including all quantum fluctuations is crucial for unitarity: it determines
which states appear in the sum over states in the optical theorem 3 0

IS RN NN

e Truncations / derivative expansion of the action = fictitious poles ' RERAR N e
{ .

e The fictitious pole is a “fake ghost’: its residue approaches o® e w e e
zero when a sufficiently large number of terms in the action o) SR RS PURMPS DV DU—
are included. Fake ghost 2

Ghosts in the full theory are instead characterized |

by a persistent negative residue.

Resi{ig)]
& &
ES (S ]

|
o
@

True ghost

e Still no proof of the “residue conjecture” (work in progress),
but no countexample found so far

0B

PR N R— TR

PR T— — S W S N S S S
8] 100 200 300 400 500

e Evolution of residue with N: criterium to determine nature of poles at finite truncation order

e Most reliable instrument to check unitarity in full glory: fully-quantum effective action
46
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