Title: Aspects of non-perturbative unitarity in Quantum Field Theory

Speakers: Alessia Platania

Series: Quantum Gravity

Date: December 04, 2019 - 3:30 PM

URL: http://pirsa.org/19120013

Abstract: According to the Asymptotic Safety conjecture, a (non-perturbatively) renormalizable quantum field theory of gravity could be constructed based on the existence of a non-trivial fixed point of the renormalization group flow.

The existence of this fixed point can be established, e.g., via the non-perturbative methods of the functional renormalization group (FRG). In practice, the use of the FRG methods requires to work within truncations of the gravitational action, and higher-derivative operators naturally lead to the presence of several poles in the propagator. The question is whether these poles represent a real problem for the unitarity of the theory.

Using QED as a working example, in this talk I will discuss some aspects of non-perturbative unitarity in Quantum Field Theory. I will show that the inclusion of quantum effects at all scales is of crucial importance to assess unitarity of field theories. In particular, poles appearing in truncations of the action could correspond to fake degrees of freedom of the theory. Possible conditions to determine, within truncations, whether a pole represents a fake or a genuine degree of freedom of the theory will also be discussed.

Pirsa: 19120013 Page 1/42

- **Einstein-Hilbert gravity**: unitary, but *perturbatively non-renormalizable*
- Quadratic gravity is a renormalizable theory, but has one massive spin-2 ghost

$$S = -\int d^4 x \sqrt{-g} \; \{ \gamma R + lpha R_{\mu
u} R^{\mu
u} - eta R^2 \}$$

1

Stelle, PRD 16 (1977) 953-969

2

Pirsa: 19120013 Page 2/42

- **Einstein-Hilbert gravity**: unitary, but *perturbatively non-renormalizable*
- Quadratic gravity is a renormalizable theory, but has one massive spin-2 ghost

$$S = -\int d^4 x \sqrt{-g} \; \{ \gamma R + lpha R_{\mu
u} R^{\mu
u} - eta R^2 \}$$

€

Stelle, PRD 16 (1977) 953-969

- Asymptotically Safe Gravity:
 - → Perturbative approaches could fail in the description of the UV behavior of a theory
 - → Gravity could be *non-perturbatively* renormalizable

Weinberg, 1976

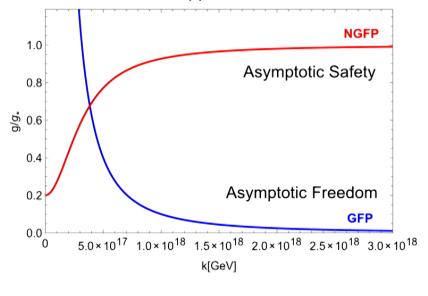
Pirsa: 19120013 Page 3/42

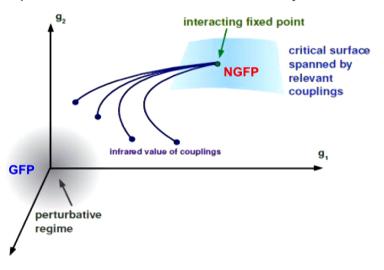
- **Einstein-Hilbert gravity**: unitary, but *perturbatively non-renormalizable*
- Quadratic gravity is a renormalizable theory, but has one massive spin-2 ghost

$$S = -\int d^4 x \sqrt{-g} \left\{ \gamma R + lpha R_{\mu
u} R^{\mu
u} - eta R^2
ight\}$$

Stelle, PRD 16 (1977) 953-969

- Asymptotically Safe Gravity:
 - → Perturbative approaches could fail in the description of the UV behavior of a theory



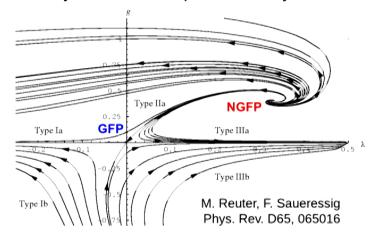


- Einstein-Hilbert gravity: unitary, but <u>perturbatively non-renormalizable</u>
- Quadratic gravity is a renormalizable theory, but has one massive spin-2 ghost

$$S = -\int d^4 x \sqrt{-g} \left\{ \gamma R + lpha R_{\mu
u} R^{\mu
u} - eta R^2
ight\}$$

Stelle, PRD 16 (1977) 953-969

- Asymptotically Safe Gravity:
 - → Perturbative approaches could fail in the description of the UV behavior of a theory
 - → Gravity could be *non-perturbatively* renormalizable



Functional (non-perturbative) RG

- → Fixed points of the RG flow:
 - GFP → saddle point
 - NGFP → UV-attractor
- → Extended truncations:
 - 3 relevant directions

6

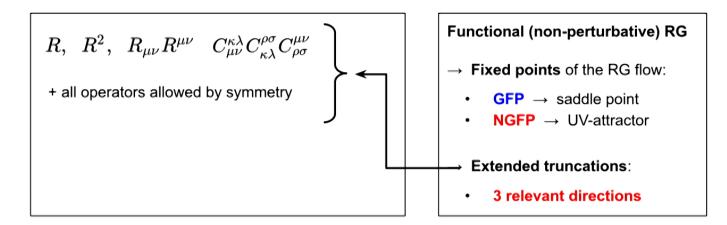
Pirsa: 19120013 Page 5/42

- Einstein-Hilbert gravity: unitary, but perturbatively non-renormalizable
- Quadratic gravity is a renormalizable theory, but has one massive spin-2 ghost

$$S=-\int d^4 x \sqrt{-g} \left\{ \gamma R + lpha R_{\mu
u} R^{\mu
u} - eta R^2
ight\}$$

Stelle, PRD 16 (1977) 953-969

- Asymptotically Safe Gravity:
 - → Perturbative approaches could fail in the description of the UV behavior of a theory
 - → Gravity could be non-perturbatively renormalizable



7

Pirsa: 19120013 Page 6/42

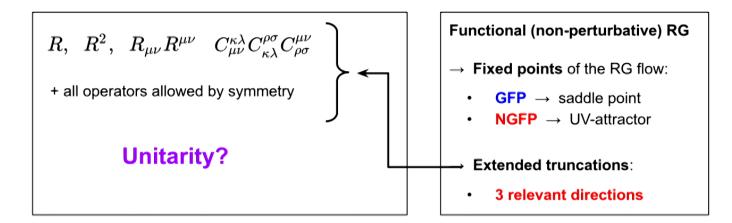
- Einstein-Hilbert gravity: unitary, but <u>perturbatively non-renormalizable</u>
- Quadratic gravity is a renormalizable theory, but has one massive spin-2 ghost

$$S = -\int d^4 x \sqrt{-g} \; \{ \gamma R + lpha R_{\mu
u} R^{\mu
u} - eta R^2 \}$$

- Asymptotically Safe Gravity:

Stelle, PRD 16 (1977) 953-969

- → Perturbative approaches could fail in the description of the UV behavior of a theory
- → Gravity could be non-perturbatively renormalizable



Pirsa: 19120013

- Einstein-Hilbert gravity: unitary, but perturbatively non-renormalizable
- Quadratic gravity is a renormalizable theory, but has one <u>massive spin-2 ghost</u>

$$S = -\int d^4 x \sqrt{-g} \left\{ \gamma R + lpha R_{\mu
u} R^{\mu
u} - eta R^2
ight\}$$

Stelle, PRD 16 (1977) 953-969

- Asymptotically Safe Gravity:
 - → Perturbative approaches could fail in the description of the UV behavior of a theory
 - → Gravity could be *non-perturbatively renormalizable*

Weinberg, 1976

Non-perturbative effects could be important for the understanding of fundamental properties of quantum field theories, such as **renormalizability and unitarity**

Non-perturbative unitarity: Although quadratic gravity has a ghost, *quantum effects* could make the ghost unstable, thus restoring unitarity

Salam, Strathdee (1978)

E. S. Fradkin, A. A. Tseytlin (1981)

- Unitarity condition

$$S^\dagger S = \mathbb{I} \qquad S = \mathbb{I} + i T$$

- Unitarity condition

$$S^\dagger S = \mathbb{I} \qquad S = \mathbb{I} + i T$$

- Optical theorem

1

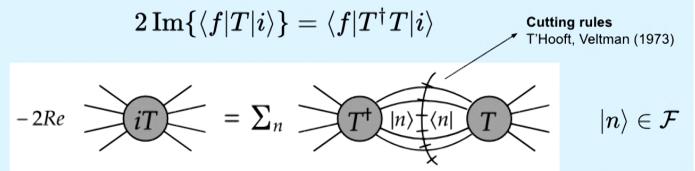
$$2{
m Im}\{T\}=T^\dagger T\geq 0$$

- Unitarity condition

$$S^\dagger S = \mathbb{I} \qquad S = \mathbb{I} + i T$$

- Optical theorem

1



Unitarity condition

$$S^\dagger S = \mathbb{I} \qquad S = \mathbb{I} + i T$$

Optical theorem

$$2\, {
m Im}\{\langle f|T|i
angle\} = \langle f|T^\dagger T|i
angle$$

$$-2Re$$
 $= \sum_n T^{\dagger} |n\rangle \langle n| T$ $|n\rangle \in \mathcal{F}$ asymptotic states contains **ghosts**

If the space of asymptotic states contains ghosts

$$\langle m|n
angle = (-1)^{lpha_n} \delta_{mn}$$
 " \mathbb{I} " $= \sum_n (-1)^{lpha_n} |n
angle \langle n|$

⇒ Loss of physical unitarity

Spectral representation

$$\Delta(q^2)=i\int_0^\infty d\mu^2rac{
ho(\mu^2)}{q^2-\mu^2+iarepsilon} \qquad
ho(q^2)=rac{1}{\pi}{
m Im}\{i\Delta(q^2)\}$$

$$ho(q^2)=rac{1}{\pi}{
m Im}\{i\Delta(q^2)\}$$

For a **stable particle**, the spectral density is a Dirac delta

- Spectral representation

$$\Delta(q^2)=i\int_0^\infty d\mu^2 rac{
ho(\mu^2)}{q^2-\mu^2+iarepsilon} \qquad
ho(q^2)=rac{1}{\pi}{
m Im}\{i\Delta(q^2)\} \qquad {
m For a \ stable \ particle, \ the spectral \ density \ is \ a \ {
m Dirac \ delta}$$

- Propagator

$$\Delta(q^2) = i \left\{ \sum_n rac{R_n}{q^2 - m_n^2} + \sum_n \left(rac{ ilde{R}_n}{q^2 - (ilde{m}_n^2)} + rac{ ilde{R}_n^*}{q^2 - (ilde{m}_n^2)^*}
ight) + \int_{m_{th}^2}^{\infty} rac{\sigma(\mu^2)}{q^2 - \mu^2} d\mu^2
ight\}$$

Pirsa: 19120013

Spectral representation

$$\Delta(q^2)=i\int_0^\infty d\mu^2rac{
ho(\mu^2)}{q^2-\mu^2+iarepsilon} \qquad
ho(q^2)=rac{1}{\pi}{
m Im}\{i\Delta(q^2)\}$$

$$ho(q^2)=rac{1}{\pi}{
m Im}\{i\Delta(q^2)\}$$

For a **stable particle**, the spectral density is a Dirac delta

Propagator

$$\Delta(q^2) = i \left\{ \sum_n \frac{R_n}{q^2 - m_n^2} + \sum_n \left(\frac{\tilde{R}_n}{q^2 - (\tilde{m}_n^2)} + \frac{\tilde{R}_n^*}{q^2 - (\tilde{m}_n^2)^*} \right) + \int_{m_{th}^2}^{\infty} \frac{\sigma(\mu^2)}{q^2 - \mu^2} d\mu^2 \right\}$$

Real poles (stable particles)

Complex poles

Unstable particles

19

Pirsa: 19120013 Page 15/42

Spectral representation

$$\Delta(q^2)=i\int_0^\infty d\mu^2rac{
ho(\mu^2)}{q^2-\mu^2+iarepsilon} \qquad
ho(q^2)=rac{1}{\pi}{
m Im}\{i\Delta(q^2)\}$$

$$ho(q^2)=rac{1}{\pi}{
m Im}\{i\Delta(q^2)\}$$

For a **stable particle**, the spectral density is a Dirac delta

Propagator

$$\Delta(q^2) = i \left\{ \sum_n rac{R_n}{q^2 - m_n^2} + \sum_n \left(rac{ ilde{R}_n}{q^2 - (ilde{m}_n^2)} + rac{ ilde{R}_n^*}{q^2 - (ilde{m}_n^2)^*}
ight) + \int_{m_{th}^2}^{\infty} rac{\sigma(\mu^2)}{q^2 - \mu^2} d\mu^2
ight\}$$

Complex poles

Real poles (stable particles)

$$ho = \sum_n R_n \delta(q^2 - m_n^2) \quad R_n \geq 0$$

Salam, Strathdee (1978), Fradkin, Tseytlin (1981) Donoghue, Menezes (2019) Unstable particles

20

Pirsa: 19120013

Spectral representation

$$\Delta(q^2)=i\int_0^\infty d\mu^2rac{
ho(\mu^2)}{q^2-\mu^2+iarepsilon} \qquad
ho(q^2)=rac{1}{\pi}{
m Im}\{i\Delta(q^2)\}.$$

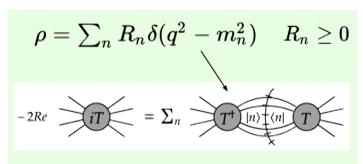
$$ho(q^2)=rac{1}{\pi}{
m Im}\{i\Delta(q^2)\}$$

For a **stable particle**, the spectral density is a Dirac delta

Propagator

$$\Delta(q^2) = i \left\{ \sum_n \frac{R_n}{q^2 - m_n^2} + \sum_n \left(\frac{\tilde{R}_n}{q^2 - (\tilde{m}_n^2)} + \frac{\tilde{R}_n^*}{q^2 - (\tilde{m}_n^2)^*} \right) + \int_{m_{th}^2}^{\infty} \frac{\sigma(\mu^2)}{q^2 - \mu^2} d\mu^2 \right\}$$

Real poles (stable particles)



Salam, Strathdee (1978), Fradkin, Tseytlin (1981) Donoghue, Menezes (2019) Complex poles

Unstable particles

$$\Delta(q^2) = rac{i}{q^2 - m_0^2} \quad \longrightarrow \quad \Delta(q^2) = rac{i}{q^2 - m_0^2 - \Sigma(q^2)}$$

Bare propagator Dressed propagator self-energy

Solving the quantum theory is equivalent to solve the functional renormalization group equation

$$k\partial_k\Gamma_k=rac{1}{2}\mathrm{STr}\left\{\left(\Gamma_k^{(2)}+\mathcal{R}_k
ight)^{-1}\;k\partial_k\mathcal{R}_k
ight\}$$

C. Wetterich. *Phys. Lett. B* 301:90 (1993) M. Reuter. *Phys. Rev.* D. **57** (2): 971 (1998)

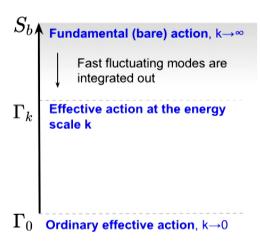
1

Pirsa: 19120013

Solving the quantum theory is equivalent to solve the functional renormalization group equation

$$k\partial_k\Gamma_k=rac{1}{2}\mathrm{STr}\left\{\left(\Gamma_k^{(2)}+\mathcal{R}_k
ight)^{-1}\ k\partial_k\mathcal{R}_k
ight\}$$

C. Wetterich. *Phys. Lett. B* 301:90 (1993) M. Reuter. *Phys. Rev.* D. **57** (2): 971 (1998)



24

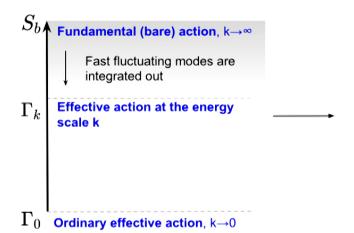
Pirsa: 19120013 Page 19/42

Solving the quantum theory is equivalent to solve the functional renormalization group equation

$$k\partial_k\Gamma_k=rac{1}{2}\mathrm{STr}\left\{\left(\Gamma_k^{(2)}+\mathcal{R}_k
ight)^{-1}\ k\partial_k\mathcal{R}_k
ight\}$$

C. Wetterich. *Phys. Lett. B* 301:90 (1993) M. Reuter. *Phys. Rev.* D. **57** (2): 971 (1998)

0



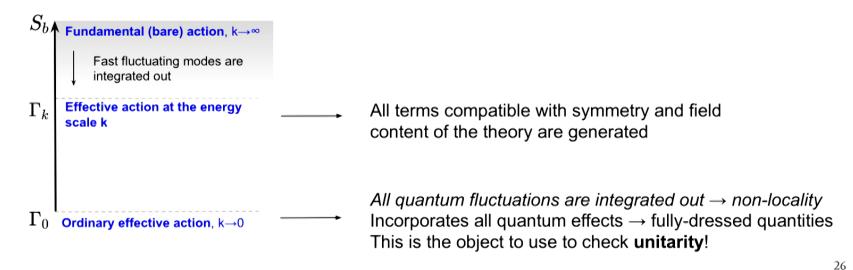
All terms compatible with symmetry and field content of the theory are generated

Pirsa: 19120013

Solving the quantum theory is equivalent to solve the functional renormalization group equation

$$k\partial_k\Gamma_k=rac{1}{2}\mathrm{STr}\left\{\left(\Gamma_k^{(2)}+\mathcal{R}_k
ight)^{-1}\ k\partial_k\mathcal{R}_k
ight\}$$

C. Wetterich. *Phys. Lett. B* 301:90 (1993)M. Reuter. *Phys. Rev.* D. **57** (2): 971 (1998)



Pirsa: 19120013 Page 21/42

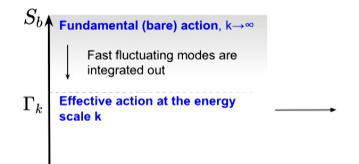
Solving the quantum theory is equivalent to solve the functional renormalization group equation

$$k\partial_k\Gamma_k=rac{1}{2}\mathrm{STr}\left\{\left(\Gamma_k^{(2)}+\mathcal{R}_k
ight)^{-1}\ k\partial_k\mathcal{R}_k
ight\}$$

Problem: Need to work within truncation ⇒ higher-derivatives ⇒ Poles

Questions:

- What is the nature of these poles?
- Are these poles removed by quantum effects?
- Connection between poles in finite truncation and poles in the effective action?
- How do we understand, within truncation, if these poles are dangerous for unitarity?



 Γ_0 Ordinary effective action, k \rightarrow 0

All terms compatible with symmetry and field content of the theory are generated

All quantum fluctuations are integrated out \rightarrow non-locality Incorporates all quantum effects \rightarrow fully-dressed quantities This is the object to use to check **unitarity**!

28

Pirsa: 19120013 Page 22/42

Take the one-loop effective action as a toy model for the full effective action

$$\Gamma_{QED} = -rac{1}{4} \int d^4x \left\{ F_{\mu\nu} P(\Box) F^{\mu\nu} \right\} \qquad P(q^2) = 1 - rac{lpha}{3\pi} \log \left(rac{m_{th}^2 - q^2}{m_{th}^2}
ight) - rac{q^2}{M^2} \qquad m_{th} = 2m_f$$

Boulware, Gross (1984)

Pirsa: 19120013

Take the one-loop effective action as a toy model for the full effective action

$$\Gamma_{QED} = -rac{1}{4} \int d^4x \left\{ F_{\mu
u} P(\Box) F^{\mu
u}
ight\} \qquad P(q^2) = 1 - rac{lpha}{3\pi} \mathrm{log} \left(rac{m_{th}^2 - q^2}{m_{th}^2}
ight) - rac{q^2}{M^2} \qquad m_{th} = 2 m_f$$

Boulware, Gross (1984)

In this case the propagator has one massless pole and one massive ghost pole

$$\Delta_{lphaeta}(q^2) = -rac{i}{q^2-rac{lpha}{3\pi}q^2\log\!\left|rac{-q^2+m_{th}^2}{m_{th}^2}
ight|-rac{q^4}{M^2}+q^2rac{ilpha}{3} heta(q^2-m_{th}^2)}
ight.}iggl\{\eta_{lphaeta}-rac{q_lpha q_eta}{q^2}iggr\}$$

30

Pirsa: 19120013 Page 24/42

Take the one-loop effective action as a toy model for the full effective action

$$\Gamma_{QED} = -rac{1}{4} \int d^4x \left\{ F_{\mu
u} P(\Box) F^{\mu
u}
ight\} \qquad P(q^2) = 1 - rac{lpha}{3\pi} \mathrm{log} \left(rac{m_{th}^2 - q^2}{m_{th}^2}
ight) - rac{q^2}{M^2} \qquad m_{th} = 2 m_f$$

Boulware, Gross (1984)

in this case the propagator has one massless pole and one massive ghost pole

$$\Delta_{lphaeta}(q^2) = -rac{i}{q^2-rac{lpha}{3\pi}q^2\log\!\left|rac{-q^2+m_{th}^2}{m_{th}^2}
ight|-rac{q^4}{M^2}+q^2rac{ilpha}{3} heta(q^2-m_{th}^2)}
ight.}iggl\{\eta_{lphaeta}-rac{q_lpha q_eta}{q^2}iggr\}$$

Absorptive part of the propagator

$$-2Re$$
 $+$ $+$

Take the one-loop effective action as a toy model for the full effective action

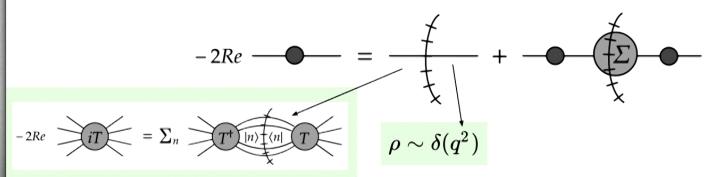
$$\Gamma_{QED} = -rac{1}{4} \int d^4x \left\{ F_{\mu
u} P(\Box) F^{\mu
u} \right\} \qquad P(q^2) = 1 - rac{lpha}{3\pi} \log \left(rac{m_{th}^2 - q^2}{m_{th}^2}
ight) - rac{q^2}{M^2} \qquad m_{th} = 2m_f$$

Boulware, Gross (1984)

In this case the propagator has one massless pole and one massive ghost pole

$$\Delta_{lphaeta}(q^2) = -rac{i}{q^2-rac{lpha}{3\pi}q^2\log\!\left|rac{-q^2+m_{th}^2}{m_{th}^2}
ight|-rac{q^4}{M^2}+q^2rac{ilpha}{3} heta(q^2-m_{th}^2)}
ight.}iggl\{\eta_{lphaeta}-rac{q_lpha q_eta}{q^2}iggr\}$$

Absorptive part of the propagator



$$\Gamma_k=-rac{1}{4}\int d^4x \{F_{\mu
u}P_kF^{\mu
u}\} \hspace{1cm} P_k(z)=\sum_{n=1}^\infty a_n(k)\,z^n \hspace{1cm} z=q^2/m_{th}^2$$

$$P_k(z) = \sum_{n=1}^\infty a_n(k)\,z^n$$

$$z=q^2/m_{th}^2$$

0

$$k = 0$$

$$k=0$$
 $P(z)=1-z+rac{lpha}{3\pi}\sum_{n=1}^{\infty}rac{z^n}{n}\equiv 1-z-rac{lpha}{3\pi}{
m log}(1-z)$

If all terms are included

$$\Gamma_k = -rac{1}{4}\int d^4x \{F_{\mu
u}P_kF^{\mu
u}\} \hspace{1cm} P_k(z) = \sum_{n=1}^\infty a_n(k)\,z^n \hspace{1cm} z = q^2/m_{th}^2$$

If all terms are included

$$k=0 \qquad P(z)=1-z+rac{lpha}{3\pi}\sum_{n=1}^{\infty}rac{z^n}{n}\equiv 1-z-rac{lpha}{3\pi}{
m log}(1-z)$$

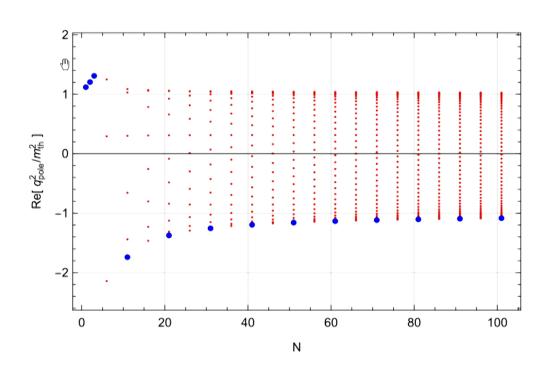
Finite truncation of the action (e.g., derivative expansion of the action)

$$P^N(z)=1-z+rac{lpha}{3\pi}\sum_{n=1}^Nrac{z^n}{n}$$

$$P^N(z)=1-z+rac{lpha}{3\pi}\sum_{n=1}^Nrac{z^n}{n} \qquad z=q^2/m_{th}^2 \qquad lpha=1 \qquad \overline{\Delta(q^2)}\simrac{i}{q^2P^N(q^2)}$$

$$z=q^2/m_{th}^2 \qquad lpha=$$

$$\Delta(q^2) \sim rac{i}{q^2 P^N(q^2)}$$



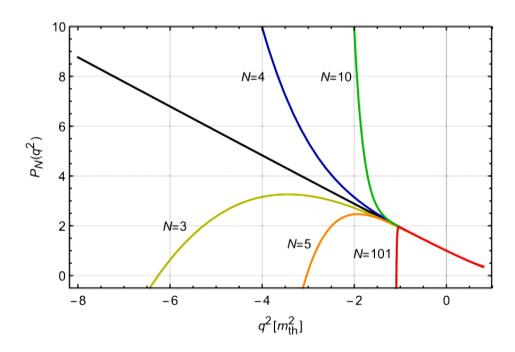
- Real poles
- Complex poles

Persistent ghost pole at

$$q^2 \sim -m_{th}^2$$

It is a pole for N odd

$$P^N(z)=1-z+rac{lpha}{3\pi}\sum_{n=1}^Nrac{z^n}{n} \qquad z=q^2/m_{th}^2 \qquad lpha=1 \qquad \overline{\Delta(q^2)}\simrac{i}{q^2P^N(q^2)}$$



The apparent ghost pole is generated by the convergence properties of the function P(z)

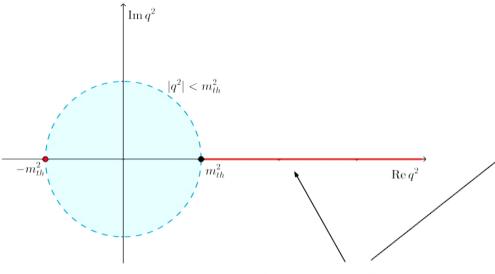
Persistent ghost pole at

$$q^2 \sim -m_{th}^2$$

It is a pole for N odd

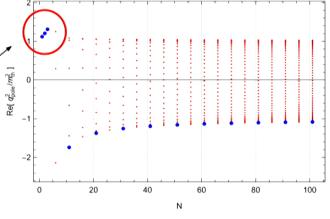
$$P^N(z)=1-z+rac{lpha}{3\pi}\sum_{n=1}^Nrac{z^n}{n} \qquad z=q^2/m_{th}^2 \qquad lpha=1 \qquad \overline{\Delta(q^2)}\simrac{i}{q^2P^N(q^2)}$$

$$\Delta(q^2) \sim rac{i}{q^2 P^N(q^2)}$$



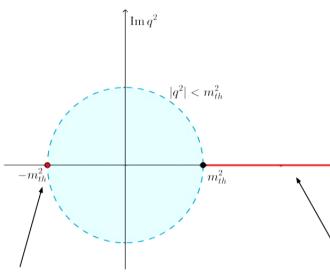
The apparent ghost pole is generated by the convergence properties of the function P(z)

Unstable ghost lives in the branch cut (cannot be seen in any perturbative expansion)



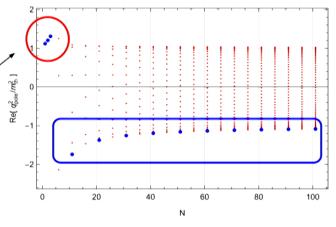
 $\operatorname{Re} q^2$

$$P^N(z)=1-z+rac{lpha}{3\pi}\sum_{n=1}^Nrac{z^n}{n} \qquad z=q^2/m_{th}^2 \qquad lpha=1 \qquad \overline{\Delta(q^2)}\simrac{i}{q^2P^N(q^2)}$$

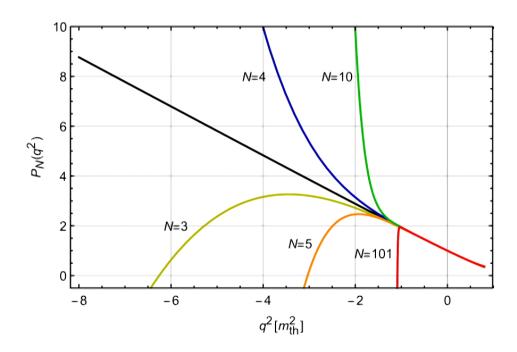


Fake ghost living in the principal branch of the Log (not appearing in the full theory)

Unstable ghost lives in the branch cut (cannot be seen in any perturbative expansion) The apparent ghost pole is generated by the convergence properties of the function P(z)



$$P^N(z)=1-z+rac{lpha}{3\pi}\sum_{n=1}^Nrac{z^n}{n} \qquad z=q^2/m_{th}^2 \qquad lpha=1 \qquad \overline{\Delta(q^2)}\simrac{i}{q^2P^N(q^2)}$$



The apparent ghost pole is generated by the convergence properties of the function P(z)

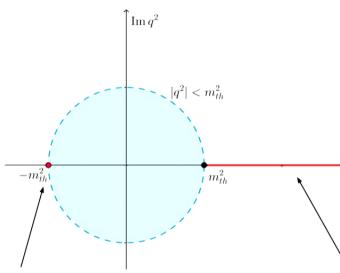
Persistent ghost pole at

$$q^2 \sim -m_{th}^2$$

It is a pole for N odd

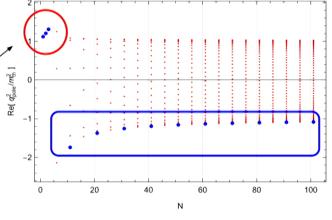
 $\operatorname{Re} q^2$

$$P^N(z)=1-z+rac{lpha}{3\pi}\sum_{n=1}^Nrac{z^n}{n} \qquad z=q^2/m_{th}^2 \qquad lpha=1 \qquad \overline{\Delta(q^2)}\simrac{i}{q^2P^N(q^2)}$$



Fake ghost living in the principal branch of the Log (not appearing in the full theory)

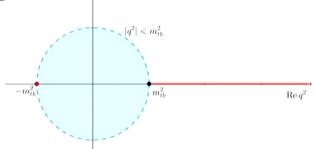
Unstable ghost lives in the branch cut (cannot be seen in any perturbative expansion) The apparent ghost pole is generated by the convergence properties of the function P(z)



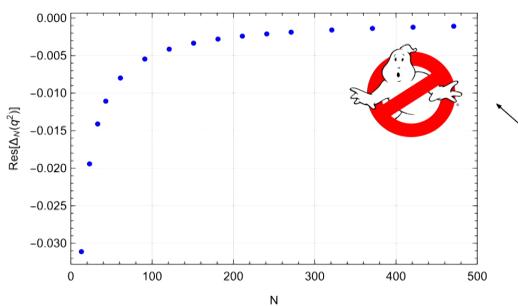
$$P^N(z)=1-z+rac{lpha}{3\pi}\sum_{n=1}^Nrac{z^n}{n} \qquad z=q^2/m_{th}^2 \qquad lpha=1$$

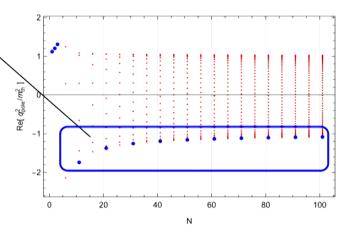
$$z=q^2/m_{th}^2$$

$$lpha=1$$



The answer lies in the residue!





$$P(q^2) = 1 + rac{lpha}{3\pi} \mathrm{log}\left(rac{m_{th}^2 - q^2}{m_{th}^2}
ight) - rac{q^2}{M^2} \quad \longrightarrow$$

Flipping the sign of the Log generates a **stable ghost**, living in the principal branch of the Log

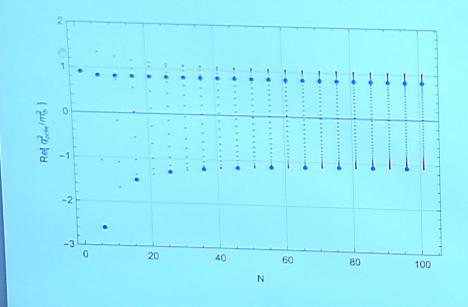
1

42

Pirsa: 19120013 Page 36/42

$$P(q^2)=1+rac{lpha}{3\pi}{
m log}\left(rac{m_{th}^2-q^2}{m_{th}^2}
ight)-rac{q^2}{M^2}$$

Flipping the sign of the Log generates a **stable ghost**, living in the principal branch of the Log

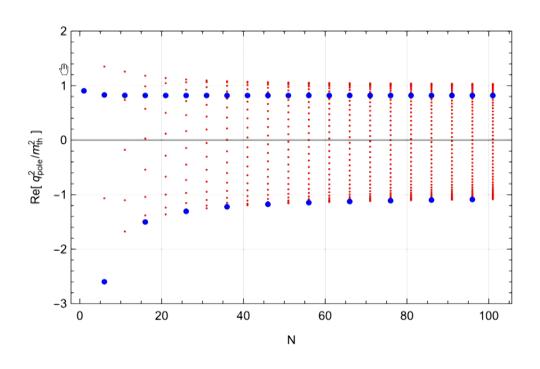


Real poles
 Complex poles

Two persistent ghost

$$P(q^2) = 1 + rac{lpha}{3\pi} \mathrm{log}\left(rac{m_{th}^2 - q^2}{m_{th}^2}
ight) - rac{q^2}{M^2}$$

Flipping the sign of the Log generates a **stable ghost**, living in the principal branch of the Log



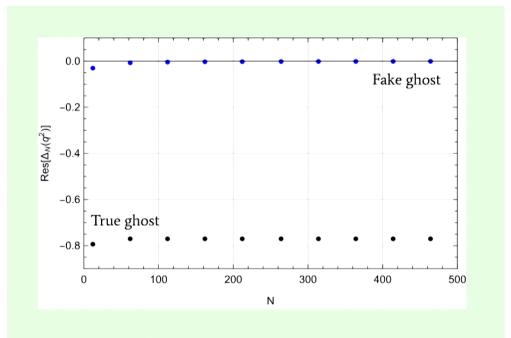
- Real poles
- Complex poles

Two persistent ghost poles!

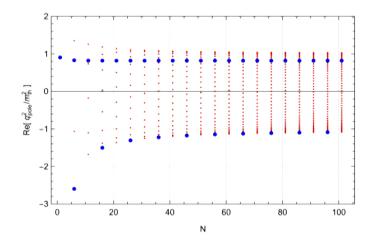
43

Pirsa: 19120013 Page 38/42

$$P(q^2) = 1 + rac{lpha}{3\pi} \mathrm{log}\left(rac{m_{th}^2 - q^2}{m_{th}^2}
ight) - rac{q^2}{M^2} \quad \longrightarrow$$



Flipping the sign of the Log generates a **stable ghost**, living in the principal branch of the Log



Stable ghost in the full theory

→ persistent negative residue

Fake ghost (generated by convergence properties of P(z))

 \rightarrow residue approaches zero

Similar results are obtained from other toy models for the fully-quantum effective action

$$P(q^2)=1+\exp(q^2/M^2)$$

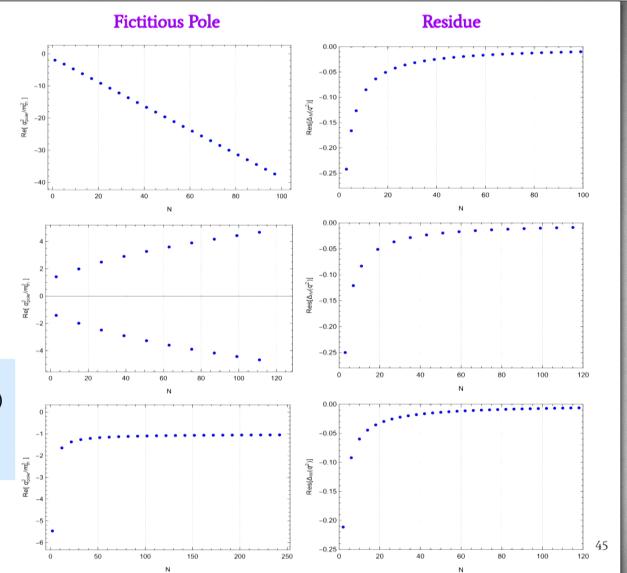
Ghost-free full theory (P(z): entire function)

Truncation: fake ghosts move to infinity, residue approaches zero

$$P(q^2) = 1 + \exp(-q^4/M^4)$$

Full theory with unstable ghosts (P has finite radius of convergence)
Truncation: fake ghost moves to boundary of domain of converg., residue approaches zero

$$P(q^2) = (1 - q^2/M^2)^{1/2}$$

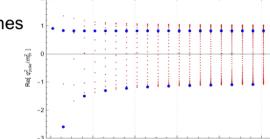


Pirsa: 19120013 Page 40/42

Summary & Conclusions

We discussed unitarity from the point of view of the Functional Renormalization Group

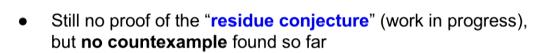
Including all quantum fluctuations is crucial for unitarity: it determines which states appear in the sum over states in the optical theorem

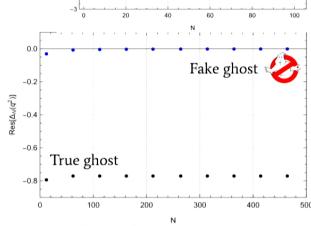


Truncations / derivative expansion of the action ⇒ **fictitious poles**

The fictitious pole is a "fake ghost": its residue approaches **zero** when a sufficiently large number of terms in the action are included.

Ghosts in the full theory are instead characterized by a persistent negative residue.





- Evolution of residue with N: criterium to determine nature of poles at finite truncation order
- Most reliable instrument to check unitarity in full glory: fully-quantum effective action

46

Pirsa: 19120013 Page 41/42

Pirsa: 19120013