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Abstract: We show that a generic many-body Hamiltonian can be uniquely reconstructed from a single pair of initial-final states under the unitary
time evolution. Interesting it is, this method is not practical due to its high complexity. We then propose a practical method for Hamiltonian
reconstruction from multiple pairs of initial-final states. The stability of this method is mathematically proved and numerically verified.

Thiswork isjoint with Liujun Zou and Timothy Hsieh.
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Motivation 1

» Experiments try to realize various Hamiltonians.
» Need to verify the Hamiltonian: Tomography.

» Standard quantum states/process tomography is
exponentially expensive.
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Motivation 2

» Many-body states know a lot about their mother
Hamiltonians.

» Correlation decay ~ gapped/gapless
» Eigenstate thermalization hypothesis
» Topological entanglement entropy knows quantum
dimension of excitations
» Qi&Ranard 1712.01850: Generic Hamiltonian
(many-body, with local interaction) can be uniquely
determined by any of its eigenstate!

» Can the tomography process be simplified for
many-body systems?

Hamiltonian
Tomography for
Many-body
Systems

Zhi Li

Motivations

Page 4/27



Pirsa: 19110145

Problem Setting

B

Quantum mechanics time evolution:

[4(0)) = (1)) = e u:(0))
Question: is it possible to determine H from |¢(0)) and
0()?
No! ~ D equations, D? unknowns
However, for many-body systems, H is often made of

local interaction terms.

» Tranverse Ising model: ZZ, X
» Heisenberg model: XX, YY,K ZZ
» SYK model: i)

poly(L) v.s. exp(L)
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Problem Setting

> Assuming H = > 7 | wilj, Lj local, n = poly(L).
Try to solve {w;} from

f —i ‘}_‘.a-f-‘,'L,‘ als
[W(t)) = e =25 (0)) .

» Nonlinear, transcendental.

» |dea: extract polynomial equations of w.
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Solving w! S
Many-body
Systems
» Energy Conservation: ol
()] K 16(0)) = ((0)] H¥ o (0)
Method

> k=1
S [0 Li [90)) — (e} Ly v(2)) |ws = 0.
I=1

> k=2
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» Number of unknowns: n (homogeneous), n — 1 o

independent unknowns.
» Number of equations: up to D — 1.

» Let's pick the first n equations. Hopeful they are
“generic enough” to determine {w} uniquely (up to
scalar).

» The scalar can also be determined generically (no exact
recurrence).
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. Hamiltonian
Wh en Fa I | ? Tomography for
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Method
» Will fail if somehow M = 0.
e.g.. if [¢(0)) = |/(t)) (e.g.: eigenstate)
» Will fail if [H, O] =0, O = sum of L;.
e.g.: classical/fine-tuned MBL cases/fine-tuned
integrable cases
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The above method is not practical... = Sagthivp
S
Zhi Li
Method
» Number of M coefficients ~ exp(n). Experiments not

possible.

(recall the last equation:

Eh i Mflf’a"'fnxflez v Xip = 0)

» NP-complete to solve polynomial equations.

» Even numerical method is expensive.
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Linear Algebra Warm-up

» n linear equations for n homogeneous unknowns:

Ax = 0.

» Generic A admits no solution.
» At least one solution < det A = 0.

» At least two solutions
< rank(A) < n—2 < all (n—1)-minors have det = 0.
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» n homogeneous equations for n homogeneous
unknowns:

Sketch of Proof
E /\/7'!'1,'2..‘,';‘,X,‘lX,;2 Ce Xj — 0,
R

» Generic M admits no solution.

» At least one solution on C < poly;(M) = 0 (Macaulay
resultant).

» At least two solutions on C <> poly,(M) = 0 for several
polys.
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Polynomial Case

In our case, one solution exists automatically (x = w),
=poly; (M) = 0.
We want polys(M) # 0 for at least one poly>.

Key observation: poly>(M) is real analytic in w. If a
real analytic function is nonzero at some point, it's
nonzero almost everywhere.

One only needs to check one point.
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Short summary:

Fix the system and fix a basis {L;} for local operators. If
Ho = zf-w?l_; can be uniquely determined from the above

procedure, then almost all H =), wiL; can be uniquely
determined.

Sketch of Proof
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Hamiltonian
CheC kS Tomography for
Many-body

» (analytical) translational-invariant transverse Ising with RFETS

next-to-nearest-neighbor interaction (L = o0)

H=MY ZZ+XY X+A3» YIY

Zhi Li

Sketch of Proof

» (numerical) translational-invariant Ising model with
magnetic field(s)/Heisenberg model (L = 10)

H= \1ZZZ+,\QZX+,\3ZZ
H:/\lzXX+,\2ZYY+,\3ZZZ

» (numerical) tranverse Ising with random couplings
(L =4, totally 7 local operators)

H=> NZiZij1+ )Y hX
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Hamiltonian

A praCtical prOtOCC)l Tomography for
Many-body
» Only use 1st (linear) equation: Systems
Zhi Li

(PO) H[¢(0)) = (v(t)[ H [4(1))

» Use n— 1 pairs of initial-final instead of one pair.

» Find kernel of a linear system:

More Practical
Method

Mx = 0,
where

My = (i(0)] L [13(0) — (ile)] Ly ().

» Same analytic function argument applies.

» Check (numerical): spin chain with random 1,2-body
operators (L =8,8 x 3+ (8 —1) x 9 = 87 local

operators).
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. Hamiltonian
TO m Og a p hy W It h errors Tonmgr;phy for
Many-body
Systems

» Measurements always come with errors ot

\4

Solution might be very unstable
> Formally: given >, Mjw; = 0 for each i =1,2,--- k.
Measure Mj; with error, try to “guess” {w}.

» Linear regression! (homogeneous version)

Stability against
y = E k;X,r + b Errors

kKi.b > w, x.y < Mj

» Least square method:
minimize >_;(>; Mjw;)? subject to >

2j 2j
» Solution: the eigenvector of M M with minimal
eigenvalue. Equivalently, singularvector of M with
minimal singularvalue.
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Hamiltonian
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Short summary:

1.
2.
3.

For a initial state |+/;(0)), measure M; (j =1,2.--- .n).
Repeat for k different initials kK > n — 1. Stability against

Errors
Write down the k x n matrix M, find its singularvector
with minimal singularvalue.
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E rror eSti m a t i O n Tomography for
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Theorem

Denote n = number of unknowns, k = number of initial
states, \ = the gap of the smallest singularvalue (0) and the
2nd smallest singularvalue of #M , € = typical error on each

M;;, then the averaged error is controlled by:

: Stability against
H = C ﬂi Errors
=

where 0 is the angle between the reconstructed Hamiltonian
and the true Hamiltonian.

Try to understand the gap A and make it big, by tuning
» time between final and initial

» the initial states ensemble
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. . Hamiltonian
U nd erSta nd I ng t he G d p_tl me Tomography for
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Zhi Li
1.0 F a ® ® ® ® [ ] <] L L @ [ [ ] @ L ] L ]
[ J

[ ]

0.8
L
0.6
@ Stability against
0.4 Errors
0.2
[ ]

0.025 0.05 0.075 0.1

(L = 8, k = 256, error and Hamiltonian averaged)

Reason: recall Mj; = (¢;(0)| L; — L;(t) [4(0)).
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Understanding the Gap—initial states ensemble S

Tomography for
Many-body
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Choice 1: Haar random states
> 1 1, T 1 2
N < (FMTM) = — Z (Wl Lj = L;(8) [v)
1 . / / I\ 2 Stability against
- n — 1 Z / d(ﬁ"‘! <(-f”| Lf o L](t) |.(-’;‘> Erm}\rl‘
J
1
D
Very bad.
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Hamiltonian

Understanding the Gap—initial states ensemble ToR e b
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Choice 2: random product states

Assuming the eigenstate thermalization hypothesis (ETH) as

well as some numerically verified approximation,

singlarvalues of %M are distributed near (%)/ :

Stability against
Errors

gap—(%)"”-“. Here | are possible lengths of the local
operators, lnax IS the max of them.
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Understanding the Gap—initial states ensemble Tohogaih or
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A sample distribution of eigenvalues (+ M " M):

40
30
. Stability against
20 :
Errors
10
[ ‘ 1 1 L T Y Y T T A ‘ 1 | L |

0.08 0.10 0.15 0.20 0.25 0.30 0.35

(operator basis {L;}: 1-body and 2-body Pauli)
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e Hamiltonian
AnOther type Of- Sta blllty Tomography for
Many-body
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Zhi Li
» Interactions in real world are not strictly local:
H = E wilj + E il
/ i’
> hc reconstruct as Stability against

H _ E L:’jl_,'.. lgnorance
;

how far will & be different from w?
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Hamiltonian

Another type of stability Torogratiy for

Many-body
Systems

Recall Zhi Li

M = (O 4 104(0)) — (64(0)] L 4(0)
block matrix M = (My; M»).

Denote the true Hamiltonian is (w) the reconstructed
I/

Stability against

Hamiltonian with our method is ; . Then the angle Ignorance
between w and & is controlled by:
i | Viw]
sinf) < I
Alle] el
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Another type of stability Ssmintio

Many-body
Systems

Zhi Li
» Interactions in real world are not strictly local:

H = ZL&.’;L,‘ + Z virlj.

Stability against
lgnorance
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Hamiltonian
S umma ry Tonmgr;phy for
Many-body
Systems
Zhi Li
1. Generic many-body Hamiltonian can be uniquely
determined from a single pair of initial-final states.
2. By using multiple initial-final pairs, one gets practical
protocol Hamiltonian tomography.
3. This protocol has complexity O(n?), experimental
feasible.
4. This protocol is stable
Summary

(1) against errors
(2) against ignorance of longer-range/many-body
Interactions.
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