Title: Two-dimensional AKLT states as ground states of gapped Hamiltonians and resource for universal quantum computation

Speakers: Tzu-Chieh Wei

Collection: Symmetry, Phases of Matter, and Resources in Quantum Computing
Date: November 28, 2019-3:30 PM
URL: http://pirsa.org/19110140
Abstract: Affleck, Kennedy, Lieb, and Tasaki (AKLT) constructed one-dimensional and two-dimensional spin models invariant under spin rotation. These are recognized as paradigmatic examples of symmetry-protected topological phases, including the spin-1 AKLT chain with a provable nonzero spectral gap that strongly supports Haldaneâ ϵ^{TM} s conjecture on the spectral gap of integer chains. These states were shown to provide universal resource for quantum computation, in the framework of the measurement-based approach, including the spin- $3 / 2$ AKLT state on the honeycomb lattice and the spin-2 one on the square lattice, both of which display exponential decay in the correlation functions. However, the nonzero spectral in these 2D models had not been proved analytically for over 30 years, until very recently. I will review briefly our understanding of the quantum computational universality in the AKLT family. Then I will focus on demonstrating the nonzero spectral gap for several 2D AKLT models, including decorated honeycomb and decorated square lattices, and the undecorated degree-3 Archimedean lattices. In brief, we now have universal resource states that are ground states of provable gapped local Hamiltonians. Such a feature may be useful in creating the resource states by cooling the system and might further help the exploration into the quantum computational phases in generalized AKLT-Haldane phases.

Two－dimensional AKLT states as （1）ground states of gapped Hamiltonians and（2）resource for universal quantum computation

Tzu－Chieh Wei（魏子傑）

C．N．Yang Institute for Theoretical Physics
$*$ Stony Brook University

[^0]
Acknowledgment

Collaborators: Robert Raussendorf, Ian Affleck, Valentin Murg, Artur Garica-Saez, Ching-Yu Huang, Abhishodh Prakash, Nikko Pomata, Hendrik Poulsen Nautrup, David Stephen, Dong-Sheng Wang,...

Nikko Pomata

Outline

I. Introduction
II. AKLT models and states for universal quantum computation (in MBQC framework)

Review: e.g. Adv. Phys. X 3, 1 (2018)
III. Nonzero gap for some 2D AKLT models

> Ref: Phys. Rev. B 100, 094429 (2019)
> \quad \& arXiv:1911.01410
IV. Summary

(Frameworks of) Quantum Computation

I. Circuit:

Major scheme by most labs: IBM, Intel, Rigetti, IonQ, Alibaba, Google

(Frameworks of) Quantum Computation

I. Circuit:

Major scheme by most labs: IBM, Intel, Rigetti, IonQ, Alibaba, Google
II. Adiabatic:

$H(t)=\left(1-\frac{t}{T}\right) H_{\text {initial }}+\frac{t}{T} H_{\text {final }}$
\checkmark Approach by D-Wave

(Frameworks of) Quantum Computation

I. Circuit:

\checkmark Major scheme by most labs: IBM, Intel, Rigetti, IonQ, Alibaba, Google
II. Adiabatic:

$H(t)=\left(1-\frac{t}{T}\right) H_{\text {initial }}+\frac{t}{T} H_{\text {final }}$
\checkmark Approach by D-Wave
III. Topological:

quantum gates = braiding anyons
\checkmark Approach by Microsoft,
Google plans to use a hybrid of III and I

(Frameworks of) Quantum Computation

I. Circuit:

- Major scheme by most labs: IBM, Intel, Rigetti, IonQ, Alibaba, Google

II. Adiabatic:

$H(t)=\left(1-\frac{t}{T}\right) H_{\text {initial }}+\frac{t}{T} H_{\text {final }}$

- Approach by D-Wave
III. Topological:

IV. Measurement -based:
quantum gates $=$ braiding anyons
\checkmark Approach by Microsoft, Google plans to use a hybrid of III and I
local measurement is the only operation needed
- Used in photonic systems, such as PsiQuantum

QC by Local Measurement

[Raussendorf \& Brigel '01]

- First: carve out entanglement structure on cluster state by local Pauli Z measurement

QC by Local Measurement

[Raussendorf \& Brigel '01]

- First: carve out entanglement structure on cluster state by local Pauli Z measurement

- Then:
(1) Measurement along each wire simulates 1-qubit evolution (gates by teleportation)
(2) Measurement near $\&$ on each bridge simulates 2 -qubit gate (CNOT via "scattering")
$\Longrightarrow 2 \mathrm{D}$ or higher dimensions are needed for universal QC

How much entanglement is needed?

\square States (n-qubit) with too much entanglement $E_{g}>n-\delta$ are not universal for QC

$$
\begin{array}{rr}
E_{g}(|\Psi\rangle) \equiv-\log _{2} \max _{\phi \in \mathcal{P}}|\langle\phi \mid \Psi\rangle|^{2} \quad \mathcal{P}=\text { set of product states } \\
\left\{\phi=\phi_{1} \otimes \phi_{2} \otimes \cdots \phi_{n}\right\}
\end{array}
$$

Intuition: for state with high entanglement, every local measurement outcome has low probability
\rightarrow whatever local measurement strategy, the distribution of outcomes is so random that one can simulate it with a random coin (thus not more powerful than classical random guessing)

Moreover, states with high entanglement are typical: those with $E_{g}<n-2 \log _{2}(n)-3$ is rare, i.e. with fraction $<e^{-n^{2}}$
\rightarrow Universal resource states are rare (8)

Some questions for MBQC

- Characterizing all resource states? Still open
- Can they be unique ground state with 2-body Hamiltonians with a finite gap? $\quad \rightarrow$ If so, create resources by cooling!
* Affleck-Kennedy-Lieb-Tasaki (AKLT) family of states [AKLT'87, '88]
[1D (not universal): [Gross \& Eisert et al. '07, '10] [Brennen \& Miyake '08]
- 2D (universal): [Miyake' 11] [Wel, Aflleck \& Raussendort '11] [Wel et al. '13-'15]
r Nonzero 2D gap no -gfter Gap established!: Lemm, Sandvik \&Wang, 1901.09297; Pomata \& Wei PRB"19] 1910.11810 and Pomata \& Wei, 1911.01410
* Symmetry-protected topological states

Some questions for MBQC

- Characterizing all resource states? Still open
- Can they be unique ground state with 2-body Hamiltonians with a finite gap? \rightarrow If so, create resources by coolingl
- Affleck-Kennedy-Lieb-Tasaki (AKLT) family of states [AKLT:87, 88]
[1 D (not universal): [Gross \& Eisert ot al ' $07,{ }^{10]}$ [Erennen \& Miyake '08]
2D (universal): [Myake' 11] [Wei, Afleck \& Raussendorf '41] [Wei et al. '13-'15]
- Nonzero 2D gap nc> -Gfter Gap establishedt: Lemm, Sandvik \&Wang. 1901.09297: Pomata \& Wei PRB 19] 1910.11810 and Pomata \& Wei, 1911.01410
- Symmetry-protected topological states

20 (universal, but not much explored): [Miller \& Myake '15] [Poulsen Nautrup \& Wer '15.
- Important progress for QC in entire symmetry-protected phases. [Raussendorf et al. PRL' 19, and Devakul \& Williamson, PRA'18, Daniel, Alexander \& Miyake '19]

Affleck-Kennedy-Lieb-Tasaki states/models

- Valence-bond ground states of isotropic antiferromagnet
* Importance: provide strong support for Haldane's
[AKLT' 87,88] conjecture on spectral properties of spin chains
* Provide concrete examples for symmetry-protected topological order [Gu \& Wen '09, '11, Pollmann et al. '12 ...]
- States of local spin $S=1,3 / 2,2, .$. (defined on any lattice/graph)
\rightarrow Unique* * ground states of gapped ${ }^{\#}$ two-body isotropic Hamiltonians $H=\sum_{\langle i, j\rangle} f\left(\vec{S}_{i} \cdot \vec{S}_{j}\right) \quad f(x)$ is a polynomial e.g. 1D: $\mathrm{S}=1 \quad H_{1 D}=\sum_{i} \hat{P}_{i, i+1}^{(S-2)}=\frac{1}{2} \sum_{\text {odgo }\langle i, j)}\left[\vec{S}_{i} \cdot \vec{S}_{j}+\frac{1}{3}\left(\vec{S}_{i} \cdot \vec{S}_{j}\right)^{2}+\frac{2}{3}\right]$
*w/ appropriate boundary conditions [Kennedy, Lieb \& Tasaki ' ${ }^{\text {88] }}$

(hybrid) AKLT state defined on any graph

$P_{v}=$ projection to symmetric subspace of n qubit \equiv spin $n / 2$

(hybrid) AKLT state defined on any graph

- \# virtual qubits /site
= \# neighbors
- Physical spin Hilbert space $=$ symmetric subspace of qubits
- Local S = \# neighbors/2
- Hamiltonian $=$ sum of projectors
$H=\sum_{\langle v, w\rangle} P_{v w}^{\left(S=S_{v}+S_{w}\right)}$
$P_{v}=$ projection to symmetric subspace of n qubit $\equiv \operatorname{spin} \mathrm{n} / 2$

AKLT has tensor-network representation

2D AKLT states for quantum computation?

- On various lattices
(1) honeycomb

(1) square-octagon

(ت) square-hexagon (spin-2 spin-3/2 mixture)

() decorated-square
(spin-2 spin-1 mixture)

Miyake '11; Wel,Aftleck \& Raussendort. PRL '11 Wel, PRA '13, Wel, Haghnegahdar\& Raussendorf, PRA '14 Wel \& Raussendorf, PRA '15
spin-3/2:

(1) square
(spin-2)

(3) star

(0) Kagome
(spin-2)

AKLT states on trivalent lattices

- Each site: three virtual qubits $\boldsymbol{9} \equiv \operatorname{spin} 3 / 2$ (in general: $\mathrm{S}=\# \mathrm{nbr} / 2$)
\rightarrow physical spin $=$ symmetric subspace of qubits
- Two virtual qubits on an edge form a singlet

$|01\rangle-|10\rangle$ $P=|3 / 2\rangle\langle 000|+|-3 / 2\rangle\langle 111|+|1 / 2\rangle\langle W|+|-1 / 2\rangle\langle\bar{W}|$

$$
\begin{aligned}
& |000\rangle \leftrightarrow\left|S=\frac{3}{2}, S_{z}=\frac{3}{2}\right\rangle \\
& |111\rangle \leftrightarrow\left|\frac{3}{2},-\frac{3}{2}\right\rangle \\
& |W\rangle \equiv \frac{1}{\sqrt{3}}(|001\rangle+|010\rangle+|100\rangle) \leftrightarrow\left|\frac{3}{2}, \frac{1}{2}\right\rangle \\
& |\bar{W}\rangle=\frac{1}{\sqrt{3}}(|110\rangle+|101\rangle+|011\rangle) \leftrightarrow\left|\frac{3}{2},-\frac{1}{2}\right\rangle
\end{aligned}
$$

Reduction to 2D graph states

[Wei,Affleck \& Raussendorf '11]
> A specific generalized measurement (POVM) on all sites converts AKLT to a graph state
(graph depends on random x, y and z outcomes)

$$
\begin{aligned}
& \mu^{x}|\Phi\rangle \longrightarrow F_{\alpha=x, y, \text { or } z}|\Phi\rangle \\
& \xrightarrow{\text { Spin } 312} \mathrm{POVM} \xrightarrow{ } \text { V } F_{x}^{\dagger} F_{x}+F_{y}^{\dagger} F_{y}+F_{z}^{\dagger} F_{z}=1 \quad \text { (Completeness) } \\
& F_{z}=\sqrt{\frac{2}{3}}\left(\left|\frac{3}{2}\right\rangle\left\langle\left.\frac{3}{2}\right|_{z}+\left\lvert\,-\frac{3}{2}\right.\right\rangle\left\langle-\left.\frac{3}{2}\right|_{z}\right) \sim|000\rangle\langle 000|+|111\rangle\langle 111|\right. \\
& F_{x}=\sqrt{\frac{2}{3}}\left(\left|\frac{3}{2}\right\rangle\left\langle\left.\frac{3}{2}\right|_{x}+\left\lvert\,-\frac{3}{2}\right.\right\rangle\left\langle-\left.\frac{3}{2}\right|_{x}\right)\right. \\
& F_{y}=\sqrt{\frac{2}{3}}\left(\left|\frac{3}{2}\right\rangle\left\langle\left.\frac{3}{2}\right|_{y}+\left\lvert\,-\frac{3}{2}\right.\right\rangle\left\langle-\left.\frac{3}{2}\right|_{y}\right)\right.
\end{aligned}
$$

Recipe: construct graph for 'the graph state'

$>$ Examples: random POVM outcomes x, y, z

honeycomb

$$
P\left(\{\alpha(v\}) \sim 2^{|V|-|\mathcal{E}|}\right.
$$

V : domains, ε : inter-domain edges

Step 1: Merge sites to "domains" \rightarrow vertices

>1 domain $=1$ logical qubit

Step 3: Check connections (percolation)

- Sufficient number of wires if graph is in supercritical phase (percolation)

\checkmark Verified this for honeycomb, square octagon and cross lattices \rightarrow AKLT states on these are universal resources

Robust connectivity?

- Characterized by artificially removing domains to see when connectivity collapses (phase transition)

[Wer '13]

Difficulty for spin-2

- Technical problem: trivial extension of POVM does NOT work!

$$
\begin{array}{ll}
F_{z}=|2\rangle\left\langle\left. 2\right|_{s}+\mid-2\right\rangle\left\langle-\left.2\right|_{z}\right. & F_{x}^{\dagger} F_{x}+F_{y}^{\dagger} F_{y}+F_{z}^{\dagger} F_{z} \neq c \cdot I \\
F_{x}=|2\rangle\left\langle\left. 2\right|_{x}+\mid-2\right\rangle\left\langle-\left.2\right|_{x}\right. & \rightarrow \text { Possible leakage out of logical subspace! } \\
F_{y}=|2\rangle\left\langle\left. 2\right|_{y}+\mid-2\right\rangle\left\langle-\left.2\right|_{y}\right. &
\end{array}
$$

- How to calculate probability distribution?

$$
p(\{F, K\})=\langle\mathrm{AKLT}| \bigotimes_{u} F_{\alpha(u)}^{\dagger} F_{\alpha(u)} \bigotimes_{v} K_{\beta(v)}^{\dagger} K_{\beta(v)}|\operatorname{AKLT}\rangle=?
$$

\square We first solved the hybrid AKLT states (on mixed \& decorated lattices) then the square lattice
[Wei, Haghnegahdar \& Raussendorf, PRA '14 Wei \& Raussendorf, PRA '15]

Universality for QC in AKLT family

- Spin-2 AKLT state on square lattice is universal
\checkmark Emerging (partial) picture for AKLT family:

AKLT states involving spin-2 and other lower spin entities are universal if they reside on a 2D frustration-free lattice (e.g. w/o triangles) with any combination of spin-2, spin-3/2, spin-1 and spin-1/2

2D AKLT states for quantum computation

\author{

- On various lattices
}

Miyake '11; Wel,Attleck \& Raussendort. PRL ' 11 Wei, PRA '13, Wel, Haghnegahdar\& Raussendorf, PRA '14 Wel \& Raussendort, PRA '15

Outline

I. Introduction
II. AKLT models and states for universal quantum computation (in MBQC framework)
III. Nonzero gap for some 2D AKLT models

IV. Summary

AKLT Hamiltonians and gap(?)

- On honeycomb lattice [AKLT '88]

$$
H=\sum_{\text {edke }\langle i, j\rangle} \hat{P}_{i, j}^{(S=3)}=\sum_{\text {edke }\langle i, j\rangle}\left[\vec{S}_{i} \cdot \vec{S}_{j}+\frac{116}{243}\left(\vec{S}_{i} \cdot \vec{S}_{j}\right)^{2}+\frac{16}{243}\left(\vec{S}_{i} \cdot \vec{S}_{j}\right)^{3}+\frac{55}{108}\right]
$$

AKLT Hamiltonians and gap(?)

- On honeycomb lattice [AKLT '88]

$$
H=\sum_{\text {edge }\langle i, j\rangle} \hat{P}_{i, j}^{(S=3)}=\sum_{\text {edge }\langle i, j\rangle}\left[\vec{S}_{i} \cdot \vec{S}_{j}+\frac{116}{243}\left(\vec{S}_{i} \cdot \vec{S}_{j}\right)^{2}+\frac{16}{243}\left(\vec{S}_{i} \cdot \vec{S}_{j}\right)^{3}+\frac{55}{108}\right]
$$

- Exponential decay of correlation functions (on hexagonal and square lattices):

$$
\begin{aligned}
& 0 \leqslant(-1)^{\mid i-\lambda}\left\langle\boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}\right\rangle \leqslant C \exp (-|i-j| / \xi) \quad \text { C, } \xi \text { const. }>0 \\
& ==>\text { strongly suggests nonzero gap }
\end{aligned}
$$

"Gap established"!: Lemm, Sandvik \&Wang, 1910.11810 and Pomata \& Wei, 1911.01410

Progress in proving nonzero gap

- Decorating lattice Λ into $\Lambda^{(n)}$ by adding n spin- 1 sites to each edge

$$
H_{\Lambda^{(n)}}^{\mathrm{AKLT}}=\sum_{e \in \mathcal{E}_{\Lambda^{(n)}}} P_{e}^{(z(e) / 2)}
$$

- Abdul-Rahman, Lemm, Luica,
 Nachtegaele \& Young (ALLNY), arXiv:1901.09297

Progress in proving nonzero gap

- Decorating lattice Λ into $\Lambda^{(n)}$ by adding n spin-1 sites to each edge

$$
H_{\Lambda^{(n)}}^{\mathrm{AKLT}}=\sum_{e \in \mathcal{E}_{\Lambda^{(n)}}} P_{e}^{(z(e) / 2)}
$$

- Abdul-Rahman, Lemm, Luica,
 Nachtegaele \& Young (ALLNY), arXiv:1901.09297

Theorem 2.2. The spectral gap above the ground state of the AKLT model on the edgedecorated honeycomb lattice with $n \geq 3$ has a strictly positive lower bound uniformly for all finite volumes with periodic boundary conditions.
\checkmark First analytic proof of nonzero gap for some 2D AKLT models (:) (but still not the undecorated honeycomb model)

* Nothing can be said about $\mathrm{n}=1$ \& 2 cases regarding spectral gap What about other lattices? Undecorated lattices?
\rightarrow Later

Ideas by ALLNY '19

a Decorating lattice Λ into $\Lambda^{(n)}$ by adding n spin- 1 sites to each edge

$$
H_{A_{(N)}^{A(N)}}^{\mathrm{AKLT}}=\sum_{e \in \mathcal{E}_{A^{(n)}}} P_{\epsilon}^{(\theta(\theta) / 2)}
$$

- Also consider two modified H :
[Abdu-Rahman et al 1901.09297$]$

(2) $\dot{H}_{A^{(n)}}=\sum_{v \in A} P_{v i}, P_{v:}$ projection to range of h_{e}

* They proved gap of (2) for $\mathrm{n} \geq 3$ (hence lower bound on gap of AKLT modela)

How to prove nonzero gap?

- Squaring H :
[AKLT '88,Knabe '88, Fannes, Nachtergaele \& Werner '92, Gosset \& Mozgunov '16, Lemm \& Mozgunov '19,
Anshu '19, Abdul-Rahman et al. 1901.09297]

$$
\frac{\left(\tilde{H}_{\Lambda^{(n)}}\right)^{2}}{\text { wing out }}=\tilde{H}_{\Lambda^{(n)}}+\frac{1}{2} \sum_{v \neq w}\left(P_{v} P_{w}+P_{w} P_{v}\right) \quad\left[\text { Note } P_{v}^{2}=P_{v}\right]
$$

. Throwing out non-overlapping $P_{v} P_{w} \geq 0$

$$
\geq \tilde{H}_{\Lambda^{(n)}}+\sum_{(v, w) \in \mathcal{E}_{\Lambda}}\left(P_{v} P_{w}+P_{w} P_{v}\right)
$$

* Overlapping $P_{v} P_{w}$ can be non-positive.

But if we have: $\quad P_{v} P_{w}+P_{w} P_{v} \geq-\varepsilon\left(P_{v}+P_{w}\right)$

Want $\varepsilon>0$ as small as possible
then we have

$$
\begin{aligned}
\left(\tilde{H}_{\Lambda^{(n)}}\right)^{2} & =\tilde{H}_{\Lambda^{(n)}}-\varepsilon \sum_{(v, w) \in \mathcal{E}_{\Lambda}}\left(P_{v}+P_{w}\right) \\
& \geq\left(1-z \varepsilon_{n}\right) \tilde{H}_{\Lambda^{(n)}}=\gamma \tilde{H}_{\Lambda^{(n)}} \quad \text { [z: coordination \#] }
\end{aligned}
$$

How to prove nonzero gap?

- Squaring H :
[AKLT '88,Knabe '88, Fannes, Nachtergaele \& Werner '92, Gosset \& Mozgunov '16, Lemm \& Mozgunov '19,
Anshu '19, Abdul-Rahman et al. 1901.09297]

$$
\frac{\left(\tilde{H}_{\Lambda^{(n)}}\right)^{2}}{\text { wing out }} \quad \tilde{H}_{\Lambda^{(n)}}+\frac{1}{2} \sum_{v \neq w}\left(P_{v} P_{w}+P_{w} P_{v}\right) \quad\left[\text { Note } P_{v}^{2}=P_{v}\right]
$$

. Throwing out non-overlapping $P_{v} P_{w} \geq 0$

$$
\geq \tilde{H}_{\Lambda(n)}+\sum_{(v, w) \in \mathcal{E}_{\Lambda}}\left(P_{v} P_{w}+P_{w} P_{v}\right)
$$

* Overlapping $\mathrm{P}_{\mathrm{v}} \mathrm{P}_{\mathrm{w}}$ can be non-positive.

But if we have: $\quad P_{v} P_{w}+P_{w} P_{v} \geq-\varepsilon\left(P_{v}+P_{w}\right)$

Want $\varepsilon>0$ as small as possible
then we have

$$
\begin{aligned}
\left(\tilde{H}_{\left.\Lambda^{(n)}\right)}\right)^{2} & =\tilde{H}_{\Lambda^{(n)}}-\varepsilon \sum_{(v, w) \in \mathcal{E}_{\Lambda}}\left(P_{v}+P_{w}\right) \\
& \geq\left(1-z \varepsilon_{n}\right) \tilde{H}_{\Lambda^{(n)}}=\gamma \tilde{H}_{\Lambda^{(n)}} \quad \text { [z: coordination \#] }
\end{aligned}
$$

* If $\gamma=(1-z z)>0$, then there is a nonzero gap

A useful lemma

- [Fannes, Nachtergaele, Werner '92]:

For two projectors E \& F (also works for 1-E \& 1-F with same ε):

$$
\begin{aligned}
& \quad E F+F E \geq-\varepsilon(E+F) \\
& \quad \varepsilon=\|E F-E \wedge F\| \quad E \wedge F: \text { projection onto } \operatorname{ran}(\mathrm{E})=\mathrm{E} \neq H \\
& \text { \& } \begin{array}{l}
\text { Proof discussed later }
\end{array} \quad \begin{array}{l}
\mathrm{F})=\mathrm{FH}
\end{array}
\end{aligned}
$$

* (1-zz) >0 implies there is a nonzero gap
- Want $\varepsilon<1 / z$ (z=3 for honeycomb)

Proposition 2.1. Let

$$
A_{n}=\frac{4}{3^{n}\left(1-\frac{8(1+3-2 n-1)}{3^{n}(1-3-2 n)}\right)}
$$

Then, for all $n \geq 3$, the quantity ε_{n} defined in (9.7) satisfies

$$
\begin{equation*}
\varepsilon_{n} \leq A_{n}+A_{n}^{2}\left(1+\frac{8\left(1+3^{-2 n-1}\right)^{2}}{3^{n}\left(1-3^{-2 n}\right)^{2}}\right)<1 / 3 \tag{2.10}
\end{equation*}
$$

Key point in upper bounding ε

- Use $\boldsymbol{E}=\boldsymbol{I}$ - \boldsymbol{P}_{v} (projection to local ground space supported on Y_{v}), $\boldsymbol{F}=\boldsymbol{I} \boldsymbol{-} \boldsymbol{P}_{w}$ (projection to local ground space supported on Y_{w})
- $E \wedge F:$ projection to $\operatorname{Ran}(E) \cap$ $\operatorname{Ran}(F)$, i.e. local ground space supported on $Y_{v} \cup Y_{w}$

Key point in upper bounding ε

- Use $\boldsymbol{E}=\boldsymbol{I}$ - \boldsymbol{P}_{v} (projection to local ground space supported on Y_{v}), $\boldsymbol{F}=\boldsymbol{I}-\boldsymbol{P}_{w}$ (projection to local ground space supported on Y_{w})
- $E \wedge F$: projection to $\operatorname{Ran}(E) \cap$ $\operatorname{Ran}(F)$, i.e. local ground space supported on $Y_{v} \cup Y_{w}$

$$
\varepsilon=\|E F-E \wedge F\|=\sup \frac{|\langle\phi| E F-E \wedge F| \psi\rangle \mid}{\|\phi\|\|\psi\|}
$$

- ALLNY 1901.09297 used tensor-network approaches (e.g. MPS) to give an upper bound on ε [No time for details here] $<1 / 3$ for $n \geq 3$

Key point in upper bounding ε

- Use $\boldsymbol{E}=\boldsymbol{I}$ - \boldsymbol{P}_{v} (projection to local ground space supported on Y_{v}), $\boldsymbol{F}=\boldsymbol{I}-\boldsymbol{P}_{w}$ (projection to local ground space supported on Y_{w})
- $E \wedge F:$ projection to $\operatorname{Ran}(E) \cap$ $\operatorname{Ran}(F)$, i.e. local ground space supported on $Y_{v} \cup Y_{w}$

$$
\varepsilon=\|E F-E \wedge F\|=\sup \frac{|\langle\phi| E F-E \wedge F| \psi\rangle \mid}{\|\phi\|\|\psi\|}
$$

- ALLNY 1901.09297 used tensor-network approaches (e.g. MPS) to give an upper bound on ε [No time for details here] $<1 / 3$ for $n \geq 3$
- $n=1$ case: $E F-E \wedge F$ is operator roughly on size of 12 qubits, unfortunately $\varepsilon \approx 0.4778>1 / 3$ (gap inconclusive);
$\mathrm{n}=2$ operator on ~ 20 qubits (not shown in ALLNY); $\mathrm{n}=5 \rightarrow \sim 43.6$ qubits

Our main results I

- Analytically prove AKLT models on decorated square lattice (spin-2 + spin-1 decoration) are gapped for $n \geq 4$
- Prove AKLT models on decorated mixed degree $3 \& 4$ lattices are gapped for $n \geq 4$
- Proof extends to lattices with same local structure: e.g. decorated square lattices gapped \leftrightarrow decorated kagome lattices gapped \leftrightarrow decorated diamond lattices gapped

- Reduce the effective size to obtain $\boldsymbol{\varepsilon}$ by exact diagonalization

| n | deg. 3, e.g.
 honeycomb | deg. 4, e.g.
 square | mixed deg.
 $3 \& 4$ | deg. 6 |
| :---: | :---: | :---: | :---: | :---: |$| \quad$ gapped

Useful lemma to upper bound η

Proposition 2.1. Let

$$
A_{n}=\frac{4}{3^{n}\left(1-\frac{8\left(1+3^{-2 n-1}\right)}{3^{n}\left(1-3^{-2 n}\right)}\right)}
$$

Then, for all $n \geq 3$, the quantity ε_{n} defined in (2.7) satisfies
(2.10)

$$
\varepsilon_{n} \leq A_{n}+A_{n}^{2}\left(1+\frac{8\left(1+3^{-2 n-1}\right)^{2}}{3^{n}\left(1-3^{-2 n}\right)^{2}}\right)<1 / 3
$$

Hilbert space and two projectors

$E \& F$ are projectors;
$\mathrm{V}_{\mathrm{E}} \equiv E \mathcal{H} \cap(E \mathcal{H} \cap F \mathcal{H})^{\perp}$
and similarly V_{F} do not include intersection

$$
\begin{gathered}
E F+F E \geq-\varepsilon(E+F) \\
\varepsilon=\|E F-E \wedge F\|
\end{gathered}
$$

- Consider eigenvalue equation α in $[-1,1]$:

$$
\begin{aligned}
& \quad(E+F) \Upsilon=(1-\alpha) \Upsilon \\
& \text { If } \alpha=-1, \quad \Upsilon \in E \mathcal{H} \cap F \mathcal{H} \\
& \text { If } \alpha=1, \quad \Upsilon \in E \mathcal{H}^{\perp} \cap F \mathcal{H}^{\perp}
\end{aligned}
$$

- If α in $(-1,1)$, unique decomposition

$$
\begin{aligned}
& \Upsilon=\varphi+\psi \quad\left(\varphi \in V_{E} \& \psi \in V_{F}\right) \\
& \text { and } F \varphi=-\alpha \psi, E \psi=-\alpha \varphi \text { (can prove this) } \\
& \text { hence }(E F+F E) \Upsilon=-\alpha(1-\alpha) \Upsilon
\end{aligned}
$$

Proving $\quad \varepsilon=\|E F-E \wedge F\|$

- E $\wedge F$ projects onto $E \mathcal{H} \cap F \mathcal{H}$

- If α in $(-1,1)$,

$$
(E+F) \Upsilon=(1-\alpha) \Upsilon
$$

has unique decomposition

$$
\Upsilon=\varphi+\psi \quad F \varphi=-\alpha \psi, E \psi=-\alpha \varphi
$$

\lrcorner Then $(E F-E \wedge F) \psi=E F \psi=-\alpha \varphi$ (can show $\varphi \& \psi$ have same norm)

$$
\begin{aligned}
& \| E F-E \wedge F \| \geq|\alpha| \\
& \text { hence } \begin{aligned}
\varepsilon & =\max _{\text {eigen }|\alpha|+1} \alpha \\
& =\|E F-E \wedge F\|
\end{aligned}
\end{aligned}
$$

Our main results |

- Analytically prove AKLT models on decorated square lattice (spin-2 + spin-1 decoration) are gapped for $n \geq 4$
\checkmark Prove AKLT models on decorated mixed degree 3 \& 4 lattices are gapped for $n \geq 4$
- Proof extends to lattices with same local structure: e.g. decorated square lattices gapped \leftrightarrow decorated kagome lattices gapped

- Reduce the effective size to obtain ε by exact diagonalization

n	deg. 3, e.g. honeycomb	deg. 4, e.g. square	mixed deg. $3 \& 4$	deg. 6
1	0.4778328889	0.5234369088	0.5001917602	0.6027622993
2	0.1183378500	0.1218467396	0.1200794787	0.1285855428
3	0.0384373228	0.0389033280	0.0386700977	
4	0.0124460198	0.0124961718	0.0124710706	
5	0.0041321990			

Proving $\quad \varepsilon=\|E F-E \wedge F\|$

- E $\wedge F$ projects onto $E \mathcal{H} \cap F \mathcal{H}$

- If α in $(-1,1)$,

$$
(E+F) \Upsilon=(1-\alpha) \Upsilon
$$

has unique decomposition

$$
\Upsilon=\varphi+\psi \quad F \varphi=-\alpha \psi, E \psi=-\alpha \varphi
$$

\lrcorner Then $(E F-E \wedge F) \psi=E F \psi=-\alpha \varphi$ (can show $\varphi \& \psi$ have same norm)

$$
\begin{aligned}
& \| E F-E \wedge F \| \geq|\alpha| \\
& \text { hence } \begin{aligned}
\varepsilon & =\max _{\text {eigen }|\alpha|+1} \alpha \\
& =\|E F-E \wedge F\|
\end{aligned}
\end{aligned}
$$

Our main results |

\sqcup Analytically prove AKLT models on decorated square lattice (spin-2 + spin-1 decoration) are gapped for $\mathrm{n} \geq 4$

- Prove AKLT models on decorated mixed degree $3 \& 4$ lattices are gapped for $n \geq 4$
- Proof extends to lattices with same local structure: e.g. decorated square lattices gapped \leftrightarrow decorated kagome lattices gapped

- Reduce the effective size to obtain ε by exact diagonalization

n	deg. 3, e.g. honeycomb	deg. 4, e.g. square	mixed deg. $3 \& 4$	deg. 6
1	0.4778328889	0.5234369088	0.5001917602	0.6027622993
2	0.1183378500	0.1218467396	0.1200794787	0.1285855428
3	0.0384373228	0.0389033280	0.0386700977	
4	0.0124460198	0.0124961718	0.0124710706	
5	0.0041321990			

Reducing Hilbert space size

- Consider a projector A satisfies:
(1) $A E=E A=E \quad$ (so $E \mathcal{H} \in A \mathcal{H})$
(2) $A F=F A$ (commute)
- If α in $(-1,1) \backslash\{0\},(E+F) \Upsilon=(1-\alpha) \Upsilon$ then $A \Upsilon=\Upsilon$ (spectrum preserved)

$$
\begin{aligned}
& F E \psi=-\alpha F \varphi=\alpha^{2} \psi \\
& (\alpha \neq 0) \rightarrow A \psi=\alpha^{-2} A F E \psi=\psi
\end{aligned}
$$

- Tensor-network picture:

Reducing Hilbert space size

- Consider a projector A satisfies:

(1) $A E=E A=E \quad($ so $E H \in A H)$
(2) $A F=F A$ (commute)
- If α in $(-1,1) \backslash\{0\},(E+F) \Upsilon=(1-\alpha) \Upsilon$ then $A \Upsilon=\Upsilon$ (spectrum preserved)

$$
F E \psi=-\alpha F \varphi=\alpha^{2} \psi
$$

$$
(\alpha \neq 0) \rightarrow A \psi-\alpha^{-2} A F E \psi=\psi
$$

a Tensor-network picture:

Eigenvalue max α is preserved

$E \& F$ are projectors; V_{F} and V_{F} do not include intersection

- Decompose $A=U_{A}^{\dagger} U_{A}, U_{A} U_{A}^{\dagger}=I^{\prime}$ so $U_{A}: \mathcal{H} \rightarrow \mathcal{H}^{\prime} \quad\left(E^{\prime}=U_{A} E U_{A}^{+}\right)$
a Consider
$\left(E^{\prime}+F^{\prime}\right) \Upsilon^{\prime}=(1-\alpha) \Upsilon^{\prime}$
$\Rightarrow U_{A}(E+F) U_{A}^{\prime} \Upsilon^{\prime}=(1-\alpha) \Upsilon^{\prime}$
$\Rightarrow(E+F) U_{A}^{\dagger} \Upsilon^{\prime}=(1-\alpha) U_{A}^{\dagger} \Upsilon^{\prime}$
\rightarrow spectrum (1- α) is preserved
$\varepsilon=\|E F-E \wedge F\|=\left\|E^{\prime} F^{\prime}-E^{\prime} \wedge F^{\prime}\right\|$
- Can further reduce dimension if exists projector B :
(1) $B F=F B=F \quad$ (2) $B E=E B$

Numerical procedure

- Obtain $\boldsymbol{E}=\boldsymbol{I}-\boldsymbol{P}_{v}$ via tensor Ψ of Y_{v} by SVD w.r.t. $\mathcal{H}_{\text {phys }} \otimes \mathcal{H}_{\text {virt }}$

$$
\Psi=W s V^{\dagger} \Rightarrow E=W W^{\dagger} \equiv U_{E}^{\dagger} U_{E}
$$

\square Similarly for $\boldsymbol{F}=\boldsymbol{I}-\boldsymbol{P}_{w}, \boldsymbol{A}$ and \boldsymbol{B}
\bullet Define $\quad E^{\prime} \equiv U_{E}^{\prime \dagger} U_{E}^{\prime}, \quad F^{\prime} \equiv U_{F}^{\prime \dagger} U_{F}^{\prime}$
where

$$
U_{E}^{\prime} \equiv U_{E} U_{A}^{\dagger} \quad U_{F}^{\prime} \equiv U_{F} U_{B}^{\dagger}
$$

- Calculate smallest eigenvalue $1-\varepsilon$ of $E^{\prime}+F^{\prime}$
- If $\varepsilon<1 / \mathrm{z}$, then the model is gapped

Improved lower bound on gap

- Consider re-arrangement of H :

$$
\begin{aligned}
& H_{\Lambda^{(n)}}^{\mathrm{AKLT}}=\sum_{v \in \Lambda} h_{Y ; v}^{\prime} \\
& h_{Y_{i v}}^{\prime}=\sum_{e \in \mathcal{Y}_{\gamma_{v}} \backslash \mathcal{E}_{v}} \frac{1}{2} P_{e}^{(z(e) / 2)}+\sum_{e \in \mathcal{E}_{v}} P_{e}^{(z(e) / 2)} \\
& \Rightarrow \Delta_{Y} \tilde{H}_{\Lambda^{(n)}} \leq H_{\Lambda^{(n)}}^{\mathrm{AKLT}} \leq\left\|h_{Y ; v}^{\prime}\right\| \tilde{H}_{\Lambda^{(n)}}
\end{aligned}
$$

\mathcal{E}_{v} : the set of edges incident on v
$\Delta_{Y}(n)$: smallest nonzero eigenvalue of h_{Y}^{\prime}
$\Rightarrow \operatorname{gap}\left(H_{\Lambda^{(n)}}^{\mathrm{AKLT}}\right) \geq \gamma(n) \equiv \Delta_{Y}(n)\left(1-z \varepsilon_{n}\right)$,

n	$\Delta_{Y}(n)$ for deg. 3	gap lower bound $\gamma(n)$	$\Delta_{Y}(n)$ for deg. 4	gap lower bound $\gamma(n)$
1	0.283484861		0.170646233	
2	0.239907874	0.154737328	0.197934811	0.101463966
3	0.207152231	0.183265099		

- Observation: naive extrapolation of lower bound from $n=3 \& n=2$ linearly [1] to $n=1: y(1) \approx 0.1262096$, [2] to $n=0: y(0) \approx 0.097682 \quad$ cf. iPEPS: $\Delta=0.10$

Main results II

- AKLT models on $\mathrm{n}=1$ (singly) decorated honeycomb and square lattices are gapped \rightarrow by choosing bigger regions

AKLT models on trivalent lattices are gapped!

AKLT models on trivalent lattices are gapped!

Approach in Lemm, Sandvik \& Wang

- Reduce gap criterion to the gap of the 36 -site problem: Needs finite-size gap $\gamma_{F}(a=1.4)>0.1385$

- Use DMRG to numerically verify this:

$$
\Delta(J=13)=0.14599
$$

Discussions

\square Decoration of spin-1 sites make the AKLT state more likely to be universal

- Short 1D AKLT wire between neighboring undecorated sites
- Decoration removes the frustration feature of measurement:
zzz, $x x x$ or $y y y$ outcome not allowed

- Decoration weakens/removes Néel order: e.g. on 3D cubic lattice [Parameswaran, Sondhi \& Arovas '09]: AKLT state on cubic lattice is Néel ordered

> AKLT model gapless, but
\rightarrow adding decoration make the decorated model gapped
(at least for $\mathrm{n}=2$ sites per edge)
\rightarrow weakens tendency toward long-range order

Discussions: "deformation"

- Can consider deformed AKLT states and investigate phase diagrams
[Niggemann, Klömper\& Zittartz '97,'00, Hieida,Okunishi\& Akutsu '99, Darmawan, Brennen, Bartlett '12, Huang, Wagner, Wei'16, Huang, Pomata, Wei '18]
- Example on square lattice:

$$
\begin{gathered}
H(\vec{a}) \equiv \sum_{(i, j)} D(\vec{a})_{i}^{-1} \otimes D(\vec{a})_{j}^{-1} h_{i j}^{(\mathrm{AKLT})} D(\vec{a})_{i}^{-1} \otimes D(\vec{a})_{j}^{-1} \\
D\left(a_{1}, a_{2}\right)- \\
\frac{a_{3}}{\sqrt{6}}\left(\left|S_{2}-2\right\rangle\left\langle S_{2}-2\right|+\left|S_{i}--2\right\rangle\left\langle S_{2}--2\right|\right)
\end{gathered}
$$

- deformation: $\quad+\frac{2 a_{1}}{\sqrt{6}}\left(\left|S_{s}=1\right\rangle\left\langle S_{t}=1\right|+\left|S_{s}=-1\right\rangle\left\langle S_{t}=-1\right|\right)$

$$
+\left|S_{4}=0\right\rangle\left\langle S_{4}=0\right|
$$

- ground state:

$$
\begin{gathered}
\left|\Psi(\vec{a})_{\text {deformed }}\right\rangle \propto D(\vec{a})^{\oplus N}\left|\psi_{\mathrm{AKLT}}\right\rangle \\
\left|\Psi_{\mathrm{AKLT}}\right\rangle=\left|\Psi\left(a_{1}=\sqrt{6} / 2, a_{2}=\sqrt{6}\right)\right\rangle
\end{gathered}
$$

Summary and open questions

[a Discussed AKLT family of states for universal measurement-based QC

- Discussed how to establish nonzero gap for AKLT models on decorated lattices \& Archimedean trivalent lattices

Summary and open questions

- Discussed AKLT family of states for universal measurement-based QC
- Discussed how to establish nonzero gap for AKLT models on decorated lattices \& Archimedean trivalent lattices
- Universal MBQC using AKLT states with higher spins $S>2$?
- What is essential symmetry that stabilizes the AKLT phase? Can the entire phase be universal resource?
- Proving nonzero gap for AKLT models on the square lattice?

[^0]: 2019／11／28＠Perimeter Institute：Workshop on
 ＂Symmetry，phases of matter and resources in quantum computing＂

