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Abstract: There is a standard generalization of stabilizer codes to work with qudits which have prime dimension, and a dlightly less standard
generalization for qudits whose dimension is a prime power. However, for prime power dimensions, the usual generalization effectively treats the
gudit as multiple prime-dimensional qudits instead of one larger object. There is a finite field GF(q) with size equal to any prime power, and it
makes sense to label the qudit basis states with elements of the finite field, but the usual stabilizer codes do not make use of the structure of the finite
field. | introduce the true GF(q) stabilizer codes, a subset of the usual prime power stabilizer codes which do make full use of the finite field
structure. The true GF(q) stabilizer codes have nicer properties than the usual stabilizer codes over prime power qudits and work with alifted Pauli
group, which has some interesting mathematical aspectsto it.

Pirsa: 19110138 Page 1/21



irsa: 19110138

Stabilizer Codes for Prime
Power Qudits

Daniel Gottesman

Perimeter Institute
Quantum Benchmark

omt work with Greg Kuperberg

Page 2/21




Qubit Pauli and Clifford Groups

# qubits
register dimension

Pauli group Pn,2 a Xb Ze | X | v)= | v+b)

Z< | V>= (_|)c-v ‘ V)
discard
phase c(XP Ze Xb* Z¢) =
b’>-c-b-C

Symplecti
ymplectic (22)2n (b|c) b, c € (Zy)"

representation

acZ4
A

Clifford group Cn2 = {U | UPUt € P2}

Hadamard H | x) =3, (-1)7 [y) phase violates
Phase P | x) = ix | X} «— binary arithmetic
CNOT | x,y)= | x,x+y)
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Qubit Stabilizer Codes

A qubit stabilizer S is an Abelian subgroup of P2 which does not
contain -l. The code space corresponding to S is

{IVIM]|P)=]Y) YMeS)
Example: 5-qubit code [[5,1,3]]

n physical qubits
r = n-k stabilizer generators My, ..., M;
k logical qubits

Other elements of S are products
of generators.

Eg:ZZ X | X=MM2M3M4 for 5-qubit code

Error syndrome:
s(P) = {c(M},P), c(M2,P), ..., c(M,P)} € (Z2)"
E.g., for 5-qubit code, s(Y3) = |1 10
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Prime Dimensional Stabilizers

A qudit stabilizer S is an Abelian subgroup of P, which does not
contain WI. The code space corresponding to S is

{IVIM]|P)=]Y) YMeS}

Example: 5-qudit code [[5,1,3]],

_X Z .Z-.l X-I l n physical qudits
| X Z Z| X r = n-k stabilizer generators My, ..., M

k logical qudits
Xl | X Z Z
ZI X1t | X Z

Other elements of S are products of
generators, including powers |, ..., p-|

Eg:ZZ' X1 | X =M IMrIMs Myl

Error syndrome:
s(P) = {c(M},P), c(M2,P), ..., c(M,P)} € (Zp)"
E.g., for 5-qubit code, s(X3Z3) = (-1,1,-1,0)
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Composite Dimension

For composite qudit dimension g, we can s | )
do this too, using the same Pauli group Xb [ v)= | vtb
(often known as the Heisenberg-Weyl Ze | v)=wev | v)

group). W = elmi/q

This is workable, but the stabilizer C(Xb’zc' X’ Zc;) -
codes derived this way lack some of b’:c-b-c
the standard structure of stabilizer b, c e (Zy)"
codes for prime-dimensional qudits. aEel’

For instance, not all elements of P4 are equivalent (some have
different orders), and there is no simple relationship between
the number of generators of S and the number of logical qudits.
There also do not need to be an integral number of qudits.

When q=pm, it is better to use an alternate Pauli group based
on the finite field of size q.
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Finite Fields

A field has abelian addition and multiplication rules, including 0, I,
additive and multiplicative inverses, and a distributive law.

Familiar examples of infinite fields are rationals, reals, & complex #s.
The simplest finite fields are Z,, mod p arithmetic for prime p.

For any q = p™, there exists a unique Example:
finite field GF(q) of size q. Such a GF(9) = Z3(),

field can be constructed by taking Z, o2+o+2=0

and adjoining the roots of irreducible
polynomials. Elements are O, I, 2, ,

o+, o+2, 2%, 20(+1,

GF(q) has characteristic p, meaning 200+2
any element added p times gives 0.

Eg, X(20+1) = 202 + &
= 2(-0-2) + & = 20(+2
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Z, Versus GF(p™)

GF(q), g=p™ can be viewed as a vector space over Z: pick m
independent adjoined elements (i, ..., &Xm. Then the elements of
GF(q) can all be written in the form 2 ¢; &, with ci e Z,.

GF(q) - (Zp)m The trace can be used to

reduce elements of GF(q) to
Tr elements of Z;:

Zp trx =X + xP + xP2+ ..+ xp™!

Properties of trace:

l.tr X e Z,

2.tr (x+f) =trx +tr B

3. tr (OP) = tr

4.tr (af) =atr B (forae Zp)
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“Standard” Pauli Group f

Pnq = {woc X ZB)
«, B € GF(q)", ¢ € Z, Z8 | y)=wrB v |y)

For qudits of dimension q=p™, the current preferred definition of
the Pauli group takes advantage of the trace to allow the
exponents of X and Z to be elements of GF(q), but the phase is
still drawn from Z,. Commutation can also be determined via tr:

(X% ZB X% ZB) =tr o’ - B - o - B’

However, this definition of Pnq is isomorphic to Pmnp.
That is, we actually have a p-dimensional Pauli group:

Given basis {X|, ..., Om} for GF(q) over Z, choose a dual basis
{B\, ..., Bm} with the property tr (i) = dj.
Then let & = 3 a & and B = 3 bj Bj, so we can interpret

Xa =X @ X232 ® ... ® X, g-dim. qudit broken up
ZB=7b @ Zb, ® ... ® Zbn, into m p-dim qudits
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“Standard” Stabilizers for q=p™

Consequently, if stabilizers are defined in the usual way from this
Pauli group Pnq, they are equivalent to mn-qudit stabilizers for p-
dimensional qudits.

Example: 5-qudit code [[5,1,3]]s

X Z Z!' X! | n physical qudits
Xo Zoa Z-a X-o | r stabilizer generators My, ..., M,
| X 7 Z1 Xl k = n-r/m logical qudits
e Other elements of S are products of
| X Za Zox X generators, including powers |, ..., p-1.
X1 X Z Z' Ppowers of o (for GF(9)) require
Xa | Xo Za Z-a| additional generators.
ZL Xl X Z

Za X | Xo Zo Error syndrome still a Z;, vector

Error syndrome: /

s(P) = {c(M|,P), c(M2,P), ..., c¢(M,P)} € (Z;)"
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True GF(q) Stabilizer Codes

Note the example 5-qudit code has an extra symmetry. Itis a
true GF(q) stabilizer code. In the symplectic representation, it is
GF(q)-linear, not just Z,-linear:

0O 0 -1 O
0 -2 0
I

-x O 0 «

However, since each generator can have an independent phase, so
there is no clear meaning of the “multiplication by " symmetry in
the Pauli group Pngq. It should mean “exponentiation by &” but
that is not a well-defined operation.
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Lifted Pauli Group (Odd q)

We want to lift the Pauli group to a larger group where
exponentiation by elements of GF(q) is well-defined. We expand
the set of possible phases to be all elements of GF(q):

Pn.q = {UJU X« ZB} o, B e GF(q)", M € GF(q)
(U)u X ZB)(LUU’ X ZB’) = UK+’ B Yot ZB+P’

c(Xx ZBXx ZB) = o+ B - o+ B’ € GF(q)

We can project an element of the lifted Pauli group back to the
regular Pauli group by using tr on the phase:

Pn,q WH X ZB

[(PQ) = (ITP)(IIQ)
@ I @ oI (@rOQ =rtrc(PQ)
Pn,q WK Xx ZPp
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Exponentiation (Odd q)

phase and existing exponents

/get multiplied by y

(WH X ZB)y = wvﬁﬂv(v-lk)/l] o B Xyo ZvPB

Note that this formula reduces new phase term giving phase

to the correct one for yeZ,. accumulation from
Exponentiation satisfies other reorganizing” X and Z powers

standard properties: Because of the |/2 that

| Py P5 = Py+5 appears in the definition
2. (PY)d = Pyd of exponentiation, this

3. PYQY = (PQ)Y when ¢(PQ)=0 only works for odd q.

This formula can be derived by representing the lifted Pauli group
as a matrix group over GF(q) and using Py = exp (Y In P).
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Pauli Group Vs. Lifted Pauli Group

Exponentiation in Pngq lets us group together operators in Py q
whose symplectic representations are related by GF(q)
multiplication:

Example: P, P9

—> P = o X! Z wo X! Z!

II
P2= (! X2 Z2 :> w2 X2 Z2

Pa = (2+2a Xa Z« w2 X Z«

This single element is enough to generate all of the others,
which correspond to m independent elements of Pnq. The
single phase Wk (U € GF(q)) gives the m independent phases
w2 (a € Zp).

There is a unique correspondence P € P q to {IIPY} C Py
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Lifted Stabilizers

S is a lifted stabilizer if S is an Abelian subgroup of P, q closed under
exponentiation (i.e.,P € S = Py € S vy € GF(q)), with wv ¢ S.

Thm.:The lifted stabilizers are in one-to-one correspondence with
the true GF(q) stabilizers.

SIS

Exponential eigenvalues: | () is an exponential eigenvector of P €

Pnq if it is an eigenvector of PY vy € GF(q). If it has eigenvalue W,
for Py;, then the exponential eigenvalue is W# s.t. tr(YiH) = a; for all i.

The codewords are the exponential W0 eigenvectors of the
elements of the lifted stabilizer, and an error E alters the
exponential eigenvalues, so the error syndrome is the GF(q)
vector of exponential eigenvalues after E, given by c(M;, E) for
generators M; of the lifted stabilizer.
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Phases for Even q

For the qubit Pauli group, the phase is a power of i, a 4th root of
unity, rather than of a pth root of unity. To lift the phase properly,
we need a way to lift Z4 to include elements of GF(2m).

Define a ring W2(q) as follows, for qg=2m:

* Elements have the form & = o + 2, with &, &2 € GF(q)
o o+ = (00 + i) +2(cx2+ B2+ Vi Bi)
* &P = (oiPi) + 2(oiP2 + x2Pi)

Square root is uniquely defined in a field of characteristic 2.

Let F(&X) = (1) + 2 (&2)2 and let tr & = 3% Fr(cX).
Then tr & € W2(2) = Za4.

W2(q) is a Galois ring or a ring of truncated Witt vectors.
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Lifted Pauli Group (Even q

For even q, we let the phase and the exponents of X and Z be
from W2(q) to define the lifted Pauli group:

an {Il'l X ZB} oL, B (S Wz(q)n He Wz(q)
(IU X ZB)(HJ Xoo ZB) = jHHu +20(’ B Kot ZB+p’

c(Xx ZB X ZB) =0 B - - B’ \Commutatlon of

but P and Q commute if 2¢(PQ) =0 X and Z gives i?

Projection II (iv X« ZB) = jur p Xoty ZB
Exponentiation: for YeW2(q),
(in X« ZB)Y = ivp + v(y-No- B Xy ZYB
Notice that the 1/2 in the phase has been absorbed by the i.
iH X ZB is Hermitian if 2u =2 o+ B
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Lifted Stabilizers, Cliffords

The rest of the construction is similar, with one exception:

Lifts are no longer unique

Thus:
e One lifted Pauli P corresponds to {II Py}, but a set {Il Pv}

corresponds to some lifted Pauli for any o2, B2.

e A lifted stabilizer S corresponds to a true GF(q) stabilizer
S’=IIS, but more than one S corresponds to the same S’

* Automorphisms of Py q correspond to Clifford group

elements that are GF(q)-linear in the symplectic
representation, but non-uniquely.

(Fine print: these constructions generally require Hermitian
elements of Py q.)
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Summary and Future Outlook

The lifted Pauli groups provide a way to define
stabilizer codes for prime power qudits that:

* Have the natural GF(q) symmetry that one
expects when dealing with codes on GF(q) registers
* Encode n-r logical qudits with r generators

* Correctly organize error syndrome information
into vectors over GF(q)

The mathematical context:

* The construction provides an unusual context in
which one can define exponentiation

* W2(q) and related ideas may be helpful
understanding other puzzles relating to stabilizers
and the Clifford group (e.g., magic states)
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