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Abstract: A self-correcting quantum memory can store and protect quantum information for a time that increases without bound in the system size,
without the need for active error correction. Unfortunately, the landscape of Hamiltonians based on stabilizer (subspace) codes is heavily
constrained by numerous no-go results and it is not known if they can exist in three dimensions or less. In this talk, we will discuss the role of
symmetry in self-correcting memories. Firstly, we will demonstrate that codes given by 2D symmetry-enriched topological (SET) phases that appear
naturally on the boundary of 3D symmetry-protected topological (SPT) phases can be self-correcting -- provided that they are protected by an
appropriate subsystem symmetry. Secondly, we discuss the feasibility of self-correction in Hamiltonians based on subsystem codes, guided by the
concept of emergent symmetries. We present ongoing work on anew exactly solvable candidate model in this direction based on the 3D gauge color
code. The model is a non-commuting, frustrated lattice model which we prove to have an energy barrier to all bulk errors. Finding boundary
conditions that encode logical qubits and retain the bulk energy barrier remains an open question.
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Symmetries, phases of matter, quantum computation
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Quantum memories
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Quantum memories: protecting quantum information

Quantum information Condensed matter
quantum error correcting code groundspace of topological phase
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» local operators fix the code subspace
» errors can be diagnosed by measuring these operators

» Self-correction: protection without active error correction
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Quantum memories through the lens of symmetry

We show:

» Existence of self-correcting memories in 3D, protected by
symmetry

» Candidate subsystem code where symmetry is emergent

Part |: Part Il;

Symmetry-protected Subsystem
self-correction quantum memories

Bulk 8171
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Outline

Self-correcting quantum memories

» Background
» No-go results

Symmetry protected self-correcting quantum memories

» The rules of the game
» Existence in 3D — example based on the cluster state model

Subsystem quantum memories
» A first step: confining model based on the 3D gauge color code
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The (Caltech) rules for self correction

1. Finite density of spins in R3
2. Local Hamiltonian H = ., h; with || h;|| < 1
3. Degenerate ground space, perturbatively stable

4. Coupled to a thermal bath, the lifetime 7 of
encoded information diverges (exponentially)
with the system size

5. Efficient classical decoder

Open problem: existence in 3 dimensions or less?
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The {Galteeh) Poulin rules for self correction

1. Finite density of spins in R3
2. Local Hamiltonian H = . h; with || h;|| < 1
3. Degenerate ground space, perturbatively stable

4. Coupled to a thermal bath, the lifetime 7 of
encoded information diverges (exponentially)
with the system size

5. Efficient classical decoder

Open problem: existence in 3 dimensions or less?
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Mechanism: the energy barrier

» Energy barrier: The minimal energy cost that needs to be
overcome to implement a logical operator through local

operations
: Arrhenius Law
% /‘ : for memory time
= ) T ~ exp(%ﬁ)
% / \ (phenomenology)
0 1)

» Necessary for stabilizer Hamiltonians (Temme 14, Temme &
Kastoryano 15), 2D abelian quantum doubles (Komar et al. 16)

» General folklore: the no strings rule
» Can a macroscopic energy barrier exist in a 3D model?
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The energy barrier: classical Ising example

HZ—ZSfo: St € Zop

» Energy barrier: O(L)

» Classical lifetime: exp (%) for T < T,
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Dimensional constraints on the energy barrier

Energy barrier Memory time

2D toric code O(1) O(1) = e°?
3D toric code O(1) O(1) = e’
4D toric code O(L) exp(BL)

Models with constant energy barriers

2D stabilizer codes
Bravyi & Terhal 09, Kay & Kolbeck 08, Haah & Preskill 12

v

v

2D commuting projectors
» Landon-Cardinal & Poulin 12

3D Stabilizer models with translational and scale invariance
Yoshida 11

v

v

3D Stabilizer models with non-Clifford gate
Pastawski & Yoshida 15
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A lesson from topological order

» Topologically protected ground states require long-range
entanglement

Def T = 0 topological order: |¢) is TO if we cannot prepare |) with a
low depth circuit

O(L)
required

» Self correction: spends time not in ground space but in a mixture
of low energy states

Def T > 0 topological order (Hastings): Gibbs state
p = e "/ Tr(e M) is TO if we cannot prepare it from the Gibbs
state of a classical Hamiltonian with a low depth circuit
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A lesson from topological order

» No obvious candidates in dimensions D < 3.

» No known topologically ordered model at T > 0.

» x Fractal models, Siva & Yoshida 17
» x 3D stabilizer, translationally and scale invariant, Hastings 11

However....

There exists symmetry protected topologically ordered phases
at T > 0 in dimension 3.

Goal:
» Understand stability
» Try to replicate in models without requiring symmetry
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Phases with symmetry

Def (Topological order with symmetry S(g)): Cannot prepare the
ground state (Gibbs state) from a product state (classical Gibbs
state) using a low depth symmetric circuit.

» Symmetry-enriched (SET) or symmetry-protected (SPT)
depending on entanglement in absence of symmetry.

£ | SPT phases | SET phases » SPT: No anyonic excitations,
= unique ground state
= » SET Anyonic excitations,
; topology dependent ground

L T T{)l]))ﬁl ::%iua] degeneracy.

. » SET found on boundary of
SPT
No Yes

Long range entanglement?
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Self correcting quantum memories with symmetries
Hamiltonian H invariant under representation of symmetry group G.

1. Finite density of spins in R?
2. Local Hamiltonian H = ), h; with | k|| < 1
3. Degenerate ground space, perturbatively stable

4. Growing symmetric energy barrier

5. Efficient classical decoder

6. Admit symmetric encoding circuit

[€hoise: S(9)] =0

an k ’
SPT
phase

- 'l
o4
Y
B ¢
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Symmetry protected memories: non examples

Admitting symmetric encoding circuits

» All logical operators must admit symmetric local decompositions
» Prevents us from naively promoting stabilizers to symmetries

2D stabilizer code

» Non examples:

1. 2D stabilizer
2. 3D stabilizer with translational and scale invariance

Pirsa: 19110137 Page 16/36



Existence of symmetry-protected self-correction

» The Raussendorf-Bravyi-Harrington model is self-correcting
under 1-form symmetry

N
//
/
1-form symmetry 3D cluster bulk 2D dressed

(Zz x Zz) (Raussendorf) toric code

Earaimd
; /3.—'—4 i //E ; ) 4 \
:L_______‘_I_;:;______i w__:\}{{I . ;

» Information encoded on the boundary, protected by the bulk

__________
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Understanding the model

Lemma
Bulk excitations are collections of loops (and therefore confined below
a critical temperature)

Lemma
Anyonic excitations can exist on the boundary if and only if by a bulk
string excitation.

Lemma
Logical fault on the boundary requires traversing an anyon
(syndrome) separation of O(L)

== Polynomial energy barrier + self correcting
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1. Bulk confinement
Bulk excitations are collections of loops (and therefore confined below
a critical temperature)

» Excitations are chains of Pauli-Z

» 1-form symmetry requires they pierce every closed 2D
submanifold an even number of times.

. le
]
[ Z] 1 %
Z|ZJ|Z,: /l;)
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2. Boundary coupling
Anyonic excitations can exist on the boundary if and only if by a bulk
string excitation.

» Symmetries on the boundary expressible as products of dressed
toric code terms and bulk cluster terms
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Self-correction key properties

Bulk confinement
» Property of 1-form symmetry

v

v

Bulk boundary coupling
» Arises from SPT order of bulk

v

Energy cost for separating anyons (syndromes)

v

Can be found in other models with symmetries, eg. (modular)

W u LV : l/
d/s /7 [ g4
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Summary of SPSCQM

» Self correction possible on boundary of SPT phases with
subsystem symmetries (1-form)

Topological order T>0 Self-correction

SPT with onsite X X

Trivial with 1-form X X

SPT with 1-form

2D commuting pro;. X Hastings 11 X Landon-Cardinal & Poulin 12
3D fractal X Siva & Yoshida 17 X Bravyl & Haah 13

4D toric Hastings 11 Alicki et al. 10

» How to realise this mechanism in a model without explicitly
enforcing symmetry.
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Part ||

Subsystem code Hamiltonians

Goal: Study a phase of the gauge color code, try to replicate features
of the 3D cluster model.

Bombin 15
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Subsystem codes (Poulin 05)

» Gauge group

G < Pauli

D

(not necessarily abelian)

‘ )g » Stabilizer group

SxZ(G)

D

l@

Logical D:Q Gauge

» Bare logicals C(G)/S
» Dressed logicals C(S)/G
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The gauge color code (Bombin 15)

» Qubits on vertices of 4 colourable, 4 valent lattice in 3D

» Gauge generators X; Z; on plaquettes
» hexagons and squares

v

Stabilizer generators X, Z; on 3-cells
» Cubes and soccer balls

v

Encodes single logical qubit on 3-ball

v

2D bare logicals, 1D dressed logicals

v

Logical operators supported on boundary

Dressed logical Bare logical

Lattice from Brown, Nickerson, Browne, 15
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Hamiltonian: the cubic honeycomb model

» Want: Hamiltonian that has loop-like excitations

HA) == > Mo+(1-NZo - > X+ Z
QeF ceC

» Chains along different directions form a cubic honeycomb
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Solving the model: frustration graphs

v

Decompose gauge part of the model

H=Hs+) H, [Hs,H]=I[H,H]=0,i#]
:

v

Frustration graph is a number of linear graphs
No product constraints amongst terms
Map to independent XY-models solvable by free fermion (via JW)

v

v
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Solving the model

Lemma

The cubic honeycomb model is dual to a number of independent 1D
XY models

Hxy(A) = = > (A Xk Xics1 + (1= X) Yi Yisr)
k

» Duality is a nonlocal unitary

» Each chain can be thought of as a [n, 1, 1] code
G = (XiXiy1.Z2idis1)

» Each solvable by JW transformation to free fermions

Pirsa: 19110137 Page 28/36



The ground space

Lemma
With tetrahedral boundary conditions, the groundspace of the cubic

honeycomb model is equal to the codespace of the gauge color code
(for a choice of fixed gauge)

HA) == > Mo+ (1-NZo - > X+ Z
QeF ceC

Lemma

The model is gapped for A € [0, 3) u (4, 1] and gapless at X = }.
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Errors

» To understand the energy barrier, we first need to understand
what errors look like

"~~~

Syndrome

1

Error

» Pauli errors look like string segments, syndromes appear on their
boundary

» Decoder fails on long strings

» This process creates and separates a pair of syndromes
» Goal: bound energy cost of such processes.
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Subsystem energy barrier

» A subtlety: operator growth.

¢t

» But remain local up to gauge transformations

—> We allow gauge transformations for free in the definition of energy
barrier

» We consider energy barrier for Pauli errors

» In order to determine harmful errors, we need a mapping: error —
syndrome

Pirsa: 19110137 Page 31/36



Confinement in the model: the bulk energy barrier

The gauge chains cover the model: any string / operator intersects

O(wt(/)) gauge chains.
ol
g 0 8
% ATV
Lemma

Pauli energy barrier to creating a pair of syndromes at v, w is
proportional to d(v, w)

» Proportionality ¢ = 2 min{Tr(Xopo), Tr(Zopo)} > 0 for A e (0,1).
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The boundary problem

» To encode logical qubits we need boundaries
» All homologically nontrivial surface operators belong to the gauge
group
» With boundaries, energy can be propagated down chain

A/ )
) g !
) B ’ 2
— —~

Q = Error c" = Violated face

» And dissipated on the boundaries
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The boundary problem

» Consider the operator that propagates a string error and
dissipates energy along the way:

AN NPAN

» Results in a bare logical

» Exist faults that couple all boundaries
» Can be implemented with constant energy cost
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The boundary problem

» Bulk confinement
» Energy cost for separating syndromes
» Bulk boundary coupling X

» Possible avenues

+ Different topologies and geometries
» Consider boundary Hamiltonians
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Conclusion

Symmetry protected self-correction possible, can we replicate it in
more reasonable models?

» Subsystem codes have rich physics
» No strings rule not necessary?

» Can reproduce the bulk energy barrier as seen in the 3D cluster
model, but not the boundary coupling

» Look for other boundary conditions/Hamiltonians.
» Look for other choices of Hamiltonians that realise different
frustration graphs

» Understanding topological order in the GCC

» SPT ordered?
» Beyond TQFT?

Open BCs | Periodic BCs
Energy barrier? X
Codespace? X

» Periodically switching between X and £ gauges.
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