Title: Fine-grained quantum supremacy and stabilizer rank

Speakers: Tomoyuki Morimae

Collection: Symmetry, Phases of Matter, and Resources in Quantum Computing

Date: November 27, 2019 - 10:15 AM

URL: http://pirsa.org/19110131

Abstract: It is known that several sub-universal quantum computing models cannot be classically simulated unless the polynomial-time hierarchy collapses. However, these results exclude only polynomial-time classical simulations. In this talk, based on fine-grained complexity conjectures, I show more `fine-grained' quantum supremacy results that prohibit certain exponential-time classical simulations. I also show the stabilizer rank conjecture under fine-grained complexity conjectures.

Pirsa: 19110131 Page 1/33

Fine-grained quantum supremacy and stabilizer rank

Tomoyuki Morimae Yukawa Institute for Theoretical Physics, Kyoto University

40min

TM and Tamaki, arXiv:1901.01637 Hayakawa, TM, and Tamaki, arXiv:1902.08382

Pirsa: 19110131 Page 2/33

Outline

- Basic back ground of ``traditional" quantum supremacy theory (10min)
- Fine-grained quantum supremacy (15min)
- T-scaling and stabilizer rank (15min)

Pirsa: 19110131 Page 3/33

``Traditional" quantum supremacy theory

Pirsa: 19110131 Page 4/33

We want to (theoretically) show quantum computing is really faster than classical computing

In terms of complexity theory, it means BQP≠BPP. it is still open!

Showing BQP \neq BPP will be extremely hard (BQP \neq BPP \rightarrow P \neq PSPACE)

Pirsa: 19110131 Page 5/33

Four approaches to separate Q and C

That said, we have many evidences that Q is faster than C.

- 1. Query complexity (Grover, Simon, etc.)
- 2. Faster than classical best algorithms (Shor, Q simulation, etc.)
- 3. Quantum supremacy (Sampling)
- 4. Shallow circuit

2/8

Pirsa: 19110131 Page 6/33

Query complexity

- →Grover, Simon, etc.
- → Standard approach in complexity theory
- →Q-C separation is possible unconditionally
- \rightarrow Query complexity \neq real time complexity

Pirsa: 19110131 Page 7/33

Faster than classical best

Evaluate real time complexity

Show faster than classical best algorithms

Factoring: classical is slow, quantum is fast

→no known mathematical proof that classical is slow

Classical fast algorithm for factoring could be found!

Classical best algorithm could be updated!

Ex: recommendation system

→Ewin Tang...

4/8

Pirsa: 19110131 Page 8/33

Sampling

Let *U* be an *n*-qubit quantum circuit

$$p_z \equiv |\langle z|U|0^n\rangle|^2 \qquad z \in \{0,1\}^n$$

 p_z is classically sampled within a multiplicative error ϵ in time T iff there exists a classical T time probabilistic algorithm that outputs z with probability q_z such that

$$|p_z - q_z| \le \epsilon p_z$$

for all z

 p_z is classically sampled within an additive error ϵ in time T iff there exists a classical T time probabilistic algorithm that outputs z with probability q_z such that

$$\sum_{z} |p_z - q_z| \le \epsilon$$

If quantum computing is classically sampled in polynomial time, then PH collapses

Multiplicative error sampling

If a sub-universal model is classically sampled within a multiplicative error ϵ <1, then the polynomial-hierarchy collapses to the 3rd level

$$|p_z - q_z| \le \epsilon p_z$$

Depth-4 circuit: Terhal-DiVincenzo (BQP is in AM)

IQP: Bremner-Jozsa-Shepherd

Boson sampling: Aaronson-Arkhipov

DQC1 (one-clean qubit model): Knill-Laflamme; Morimae-Fujii-Fitzsimons

postBQP=postBPP

3rd level collapses can be improved to the 2nd level collapse [Fujii-Kobayashi-Morimae-Nishimura-Tani-Tamate (abc)]

NQP=NP

L is in NP iff there exists a PPT machine such that If x in L then p_{acc} >0 If x is not in L then p_{acc} =0

$$PH \subseteq \hat{BP} \cdot coC_{=}P = \hat{BP} \cdot NQP \subseteq \hat{BP} \cdot NP \subseteq AM$$

6/8

Pirsa: 19110131

Additive error sampling

If a sub-universal model is classically sampled within an additive error, then the polynomial-hierarchy collapses to the 3rd level

IQP: Bremner-Montanaro-Shepherd

Boson sampling: Aaronson-Arkhipov

DQC1: Morimae

Random circuit: Bouland-Fefferman-Vazirani

$$\sum_{z} |p_z - q_z| \le \epsilon$$

Computing f(z) within a multiplicative error 1/100 for at least 1/10 fraction of z is #P-hard

f(z): Ising partition function, permanent, etc.

Following versions are proven:

exactly

Computing f(z) within a multiplicative error 1/100 for at least 1/10 fraction of z is #P-hard Computing f(z) within a multiplicative error 1/100 for at least 1/10 fraction of z is #P-hard a single

Only for Boson sampling, an additional conjecture, anti-concentration, is necessary.

Shallow quantum circuit

Bravyi-Gosset-Koenig 2018

Universal quantum (BQP)

``weak" quantum

Sampling (under complexity conjectures)

Universal classical (P)

"very weak" quantum (constant depth)

Shallow circuit (unconditional)

"'very weak" classical (constant depth)

8/8

Pirsa: 19110131 Page 12/33

Pirsa: 19110131 Page 13/33

Fine-grained quantum supremacy

Traditional quantum supremacy:

Sub-universal quantum models cannot be classically simulated in polynomial time (unless PH collapses)

These results do not exclude super-polynomial time classical simulations \rightarrow They could be simulated in classical $2^{0.5N}$ time...

Exponential-time classical simulation is infeasible, and hence useless →wrong!

- (1) Near-term medium-size quantum machine could be classically simulated.
- (2) Non-trivial exponential-time classical simulation algorithm. [e.g., Bravyi-Smith-Smolin-Gosset: 2^{0.48t}-time algorithm]
- →Can we also exclude exponential-time classical simulation?

Pirsa: 19110131

``Standard" complexity theory will not be useful for this purpose.

→ It is not ``fine-grained": only polynomial vs exponential.

fine-grained complexity theory! (SETH, OV, 3SUM, APSP...)

Main result (Informal):

Sub-universal quantum computing models cannot be classically sampled even in some exponential-time under certain fine-grained complexity conjectures.

Related works:

Dalzell-Harrow-Koh-La Placa: Multiplicative error sampling of IQP, QAOA, Boson sampling

Huang-Newman-Szegedy: Strong simulation based on ETH

2/11

Pirsa: 19110131 Page 15/33

Exponential time hypothesis

Find a solution among 2^n possibilities

Impossible in poly(n) time \rightarrow P \neq NP hypothesis

Impossible in $2^{o(n)}$ time \rightarrow Exponential time hypothesis (ETH)

Almost 2^n time is necessary \rightarrow Strong exponential time hypothesis (SETH)

3/11

Pirsa: 19110131 Page 16/33

SETH-like conjecture

SETH:

For any a>0, there exists k such that k-CNF-SAT over n variables cannot be solved in time $2^{(1-a)n}$

Modified SETH:

Let f be a log-depth Boolean circuit over n variables. Then for any a>0, deciding gap(f) $\neq 0$ or =0 cannot be done in non-deterministic time $2^{(1-a)n}$

$$gap(f) = \sum_{x \in \{0,1\}^n} (-1)^{f(x)}$$

1: k-CNF → log-depth Boolean circuit

2: #f>0 or =0 \rightarrow gap(f) \neq 0 or =0

3: deterministic time → non-deterministic time

4/11

Pirsa: 19110131 Page 17/33

Result

Modified SETH:

Let f be a log-depth Boolean circuit over n variables. Then for any a>0, deciding gap(f) \neq 0 or =0 cannot be done in non-deterministic time $2^{(1-a)n}$

Result:

Assume that Conjecture is true. Then, for any a>0, there exists an N-qubit one-clean qubit model that cannot be classically sampled within a multiplicative error <1 in time $2^{(1-a)(N-3)}$

One-clean qubit model cannot be classically simulated in exponential time!

 2^N -time simulation is possible: our result is optimal!

Similar results hold for many other sub-universal models (such as HC1Q)

5/11

Pirsa: 19110131 Page 18/33

Proof idea:

Any log-depth Boolean circuit f can be computed with single work qubit and n input qubits [Cosentino, Kothari, Paetznick, TQC 2013]

Hence we can construct an N=n+1 qubit quantum circuit V such that

$$|\langle 0^N | V | 0^N \rangle|^2 = \frac{gap(f)^2}{2^n}$$

6/11

Pirsa: 19110131

With V, construct the one-clean-qubit circuit

If gap(f) \neq 0 then $p_{acc}>0$ If gap(f)=0 then $p_{acc}=0$

Assume that p_{acc} is classically sampled in time $2^{(1-a)N}$. Then, there exists a classical $2^{(1-a)N}$ -time algorithm that accepts with probability q_{acc} such that

$$|p_{acc} - q_{acc}| \le \epsilon p_{acc}$$

If gap(f)≠0 then
$$q_{acc} \geq (1-\epsilon)p_{acc} > 0$$
 If gap(f)=0 then $q_{acc} \leq (1+\epsilon)p_{acc} = 0$

Hence, gap(f) $\neq 0$ or =0 can be decided in non-deterministic $2^{(1-a)n}$ time

→ contradicts to the conjecture!

SETH OV 3SUM APSP (=NWT) Fine-grained quantum supremacy can be shown based on these conjectures. 8/11

Pirsa: 19110131 Page 21/33

FG Q supremacy based on OV

Conjecture:

Given d-dim vectors, $u_1,...,u_n,v_1,...,v_n\in\{0,1\}^d$ with d=clog(n).

For any $\delta>0$ there is a c>0 such that deciding gap $\neq 0$ or gap=0 cannot be done in non-deterministic time $n^{2-\delta}$.

$$gap = |\{(i,j) \mid u_i \cdot v_j = 0\}| - |\{(i,j) \mid u_i \cdot v_j \neq 0\}|$$

Result:

Assume that Conjecture is true. Then, for any $\delta>0$ there is a c>0 such that there exists an N-qubit quantum computing that cannot be classically sampled within multiplicative error $\epsilon<1$ in time $2^{\frac{(2-\delta)(N-4)}{3c}}$

OV is derived from SETH: even if SETH fails, OV can still survive

FG Q supremacy based on 3-SUM

Conjecture:

Given the set $\,S\subset \{-n^{3+\eta},...,n^{3+\eta}\}\,$ of size n, deciding

gap $\neq 0$ or =0 cannot be done in non-deterministic $n^{2-\delta}$ time for any $\eta, \delta > 0$.

$$gap = |\{(a, b, c) \mid a + b + c = 0\}| - |\{(a, b, c) \mid a + b + c \neq 0\}|$$

Result:

Assume the conjecture is true. Then, for any $\eta,\delta>0$, there exists an N-qubit quantum computing that cannot be classically sampled within a multiplicative

error
$$\epsilon < 1$$
 in time $\; 2 \frac{(2-\delta)(N-15)}{3(3+\eta)} \;$

No relation is known between SETH and 3SUM

A kind of risk hedge..

Additive-error FG supremacy

Let f be an n-variable degree-3 polynomial over F_2 . It is impossible to compute gap(f) within a multiplicative error 1/100 in PTIME(2^{aN})^NTIME(m) for at least 1/10 fraction of z.

There exists a constant b and an N-qubit IQP model whose output probability distribution cannot be sampled within an additive error 1/100 in time 2^{bN} .

Proof idea

- (1) Markov
- (2) Stockmeyer \rightarrow generalizing to exponential time classical algorithm
- (3) Anti-concentration

11/11

Pirsa: 19110131 Page 24/33

Pirsa: 19110131 Page 25/33

T-scaling

So far, we have considered N-scaling (qubit scaling)

E.g., Sub-universal models cannot be classically simulated in classical 2^{aN} time

How about the T-scaling?

Clifford gates + T gate are universal.

$$T = diag(1, e^{i\pi/4})$$

Clifford: easy T: difficult

Near-term machines will have few T gates. → T-scaling is important!

Pirsa: 19110131 Page 26/33

For any Q circuit U over Clifford and t T gates, there exists a Clifford circuit such that

Magic state gadget

$$|T\rangle = \cos\frac{\pi}{8}|0\rangle + \sin\frac{\pi}{8}|1\rangle$$

Classical simulation

Clifford circuit
$$\langle 0^n | U | 0^n \rangle = \sqrt{2^t} \langle 0^{n+t} | W(|0^n\rangle \otimes |T\rangle^{\otimes t})$$
 Clifford and t T-gates
$$= \sqrt{2^t} \sum_{i=1}^{\chi} c_i \langle 0^{n+t} | W(|0^n\rangle \otimes |\phi_i\rangle)$$

$$|T
angle^{\otimes t} = \sum_{i=1}^{\chi} c_i |\phi_i
angle$$
 Stabilizer state (Clifford gates on |0...0>)

$$\chi \leq 2^{0.468t} \qquad \begin{array}{c} \text{Therefore, U can be classically simulated in } 2^{0.468t} \text{ time.} \\ \text{[Bravyi-Smith-Smolin-Gosset]} \end{array}$$

3/8

Pirsa: 19110131 Page 28/33

Can we improve $2^{0.468t}$ -time simulation? (Their result is not known to be optimal)

May be to $2^{0.001t}$ -time...

But, not $2^{o(t)}$!

Result:

If ETH is true, then Clifford + t T gate quantum computing cannot be classically (strongly) simulated in $2^{o(t)}$ time.

ETH

3-CNF-SAT with n variables cannot be solved in time $2^{o(n)}$.

For simplicity, we consider strong simulation, but similar result is obtained for sampling

(Huang-Newman-Szegedy also showed the same result independently)

4/8

Pirsa: 19110131 Page 29/33

Sparcification lemma is important

ETH

3-CNF-SAT with n variables cannot be solved in time $2^{o(n)}$.

Sparcification lemma [Impagliazzo, Paturi, Zane]

 $\langle 0^N | U | 0^N \rangle = \frac{\# f}{2^{poly(n)}}$

ETH

3-CNF-SAT with \emph{m} clauses cannot be solved in time $2^{o(\emph{m})}$.

f: 3-CNF over n variables. Number m of clauses is n^3

2m AND and m-1 OR
$$\rightarrow$$
 3m-1 Toffoli \rightarrow 7(3m-1) T gates

$$n^3 = t$$

$$<0^N \, | \, \textit{U} \, | \, \, 0^N > \text{cannot be computable in } 2^{o(n)} = 2^{o(t \, {}^{\circ} \{ \frac{1}{3} \})} \text{time}$$

Corollary: stabilizer rank conjecture is true (under ETH)

Stabilizer rank χ : smallest k such that

Complex numbers

$$|\psi\rangle = \sum_{j=1}^{k} c_j |\phi_j\rangle$$

Stabilizer state (Clifford gates on |0...0>)

Bravyi-Smith-Smolin

$$\chi(|T\rangle^{\otimes t}) \le 2^{0.468t}$$

Stabilizer-rank conjecture:

$$\chi(|T\rangle^{\otimes t}) \ge 2^{\Omega(t)}$$

The stabilizer rank conjecture is true if ETH is true.

$$\langle 0^N | U | 0^N \rangle = \frac{\# f}{2^{poly(n)}}$$

7/8

Known best (unconditional) lowerbound

$$\chi(|T\rangle^{\otimes t}) \ge \Omega(\sqrt{t})$$

H-scaling

H + diagonal gates are universal (e.g., Toffoli) [Aharonov, Shi]

Diagonal gates are ''classical" and H is the ''resource" for quantum speedups

It is interesting to consider complexity of classical simulation in H-counting

Upperbound:

There exists $2^{0.984965h}$ -time classical algorithm to (strongly) simulate H+T+CZ circuit

Lowerbound:

Assume that Conjecture is true. Then for any constant a>0 and for infinitely many h, there exists a quantum circuit with classical gates and h H gates whose output probability distributions cannot be classically sampled in time $2^{(1-a)h/2}$ within a multiplicative error $\epsilon<1$

Conjecture:

Let f be a poly-size Boolean circuit over n variables. Then for any a>0, deciding gap(f) $\neq 0$ or =0 cannot be done in non-deterministic time $2^{(1-a)n}$

8/8

Pirsa: 19110131 Page 32/33

Summary

- ``Traditional" quantum supremacy prohibit only polynomial-time classical simulations.
- Fine-grained quantum supremacy: based on classical fine-grained complexity conjectures, almost 2^N -time classical simulations are excluded.
- $2^{o(t)}$ -time classical simulation of Clifford+T circuits is impossible under ETH. (Stabilizer-rank conjecture is true under ETH.)

Pirsa: 19110131 Page 33/33