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Abstract: Consider the task of estimating the expectation value of an n-qubit tensor product observable in the output state of a shallow quantum
circuit. Thistask is a cornerstone of variational quantum algorithms for optimization, machine learning, and the smulation of quantum many-body

systems. In this talk | will describe three special cases of this problem which are "easy" for classical computers. This is joint work with Sergey
Bravyi and Ramis Movassagh.

Pirsa: 19110130 Page 1/53



Classical algorithms for quantum mean values

Sergey Bravyi
David Gosset
Ramis Movassagh

arXiv:1909.11485

UNIVERSITY OF . f
CIFAR - | C Quantum NSERC
_— @ Computing CBSNG

irsa: 19110130 Page 2/53



Circuit depth

Circuit depth is the number of time steps allowing for parallel gates.
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Circuit depth is the number of time steps allowing for parallel gates.

Time step 1
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Circuit depth

Circuit depth is the number of time steps allowing for parallel gates.

4 N

Time step 3
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Shallow quantum circuits

n
# of qubits
e ——————————————————————

d : circuit depth

We are interested in circuits with depth d = 0(1).
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Why study shallow quantum circuits?

Small quantum computers: lack of error correction places limits on circuit
size. So look at either few qubits (uninteresting) or low circuit depth.

Simplicity: a restricted model of quantum computation with structure

K%g? that can be exploited.

SIMPLE

Computational power...
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What are shallow quantum circuits good for?

o Depth d

ep n
1) quantum ~A] ZE€ {0,1}
circuit
i =

Sample from classically inaccessible probability distributions

[Terhal Divincenzo 2002]
[Gao et al 17]
[Bermejo-Vega et al. 17]
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What are shallow quantum circuits good for?

IO) Depth d &

ep n
1) quantum A Z € {0,1}
.o circuit :
o =

Solve certain linear algebra problems faster than classical
algorithms

[Bravyi, G., Koenig 18]
[Bene Watts, Kothari, Schaeffer, Tal 19]
[Bravyi, G., Koenig, Tomamichel 19]
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What are shallow quantum circuits good for?

10)
10) EoPUT ¢ z € {0,1}"

quantum

Al

circuit

10) —

...Anything else?
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Variational quantum algorithms

A recent family of “near-term” algorithms which has attracted great interest:

1
1
i QPU CPU
i (Hy)
g Quantum module 1
| (Ha)
tmemd Quantum module 2
(Hy)

d Quantum module 3 [ 2

Classical adder

Quantum state preparation

{Hp)
— I

Image depicts the Variational Quantum Eigensolver paper, taken from [Peruzzo et al. 2013] ...
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Variational quantum algorithms

Goal: find the minimum energy of a given Hamiltonian.

H = Z P, Emin = min(|H 1)

|

We will be interested in the case
where each term is an n-qubit Pauli operator

Pirsa: 19110130 Page 12/53



Variational quantum algorithms

Mild assumption #1: your quantum device can prepare a subset S of n-qubit states

0)
0)

Quantum . |l/)) ES

device

10)

™~
Classical “Knob settings”
for y

4

We will be interested in the case where S consists of states that can be prepared by
constant-depth quantum circuits.
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Variational quantum algorithms

Mild assumption #2: The device can be used to measure the energy of a given state y € S
E@W) = WIHI) = ) (IPI)

This can be achieved by computing each mean value (Y |P;|y) separately and then summing
them.

device

N
Classical “Knob settings” Qg E (1,1))
for y

_J
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Variational quantum algorithms

A variational algorithm aims to compute the minimum energy over states in S

i)

The algorithm uses the quantum device to compute energies and a classical computer
to choose the knob settings:

Quantum
Classical “Knob settings” device E (1,01)
for ¢,
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Variational quantum algorithms

A variational algorithm aims to compute the minimum energy over states in §

min(pIH )

The algorithm uses the quantum device to compute energies and a classical computer
to choose the knob settings:

Classical “Knob settings” E (Lb1)
for y,

/

Classical
computer
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International Workshop on Quantum Technology and Optimization Problems

QTOP 2019: Quantum Technology and Optimization Problems pp 74-8% | Cite as
Jariational Quantum Factoring
Authaors Authors and affillations

Erlc Anschuetz, Jonathan Olson, Alan Aspuru-Guzik, Yudong Cao

PHYSICAL REVIEW LETTERS

Highlights  Recent  Accepled  Collections  Authors  Referees  Search

Quantum Machine Learning in Feature Hilbert Spaces

What are variational Ber
quantum algorithms
good for?

Hardware-efficient variational quantum

cigensolver for small molecules and

quantum magnets

Supervised learning with quantum-
enhanced feature spaces

- -
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Lack of performance guarantees

Unfortunately, variational algorithms don’t have performance guarantees as they are
challenging to analyze:

Challenge #1: Is fl}}ln('ﬂlHW) close to mln(¢|H|1/))

Challenge #2: Is the output of the algorithm close to rl}}gsl(wIH [YP) 2

Do these algorithms really have any algorithmic speedup over classical
computers...
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Do we really need a quantum computer?

The quantum computer is only used to compute mean values of observables at the
output of a quantum computation

(on|utou|om)

How hard is this problem? Could we use a classical computer instead?
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The mean value problem

Let U be a depth d = 0(1) quantum circuit.

Let O be a tensor product of single-qubit Hermitian operators
0=0,Q0,R 0, Assume ||0;]| < 1

We are interested in estimating the mean value

[ u = (0"|uto Ujo™) }
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The mean value problem

[ u= (0" uto ulom) J

Interesting special case:

0 = |x1 }(x1] @ |x2){x2| @ - & [x7){x7]

Then the mean value is an output probability of the quantum circuit

u = [{x|U|0™)|?
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The mean value problem

0=0,80,® Q& 0y, [ u={0"|uto u|om) }

/Additive error mean value problem D

Given € = compute an estimate i such that

1
poly(n)’

i—ul <e
< |7 — ul D

The additive error mean value problem can be solved efficiently on a quantum
computer.
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The mean value problem

0=0,80,® Q& 0y, u={0"|uto u|om)
/Relative error mean value problem N
. 1 . o~
Given € = vl compute an estimate ji such that
i —pl < en
A /

The relative error mean value problem is #P-hard.
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Complexity of the mean value problem

Quantum circuit U

Observables O,

Relative error

Additive error

Polynomial size

Pos. semidefinite

#P-hard [16]

BQP-complete

Constant depth

Close to [

P [Thm. 1]

P [Thm. 1]

Constant depth

Pos. semidefinite

#P-hard [15, 16]

BQP

Subexp. classical [Thm. 4]

2D Constant depth

Hermitian

#P-hard [15, 16]

Subexp. classical [17]

BPP [Thm. 5]
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Complexity of the mean value problem

Quantum circuit U

Observables O,

Relative error

Additive error

Polynomial size

Pos. semidefinite

#P-hard [16]

BQP-complete

Constant depth

Close to [

P [Thm. 1]

P [Thm. 1]

Constant depth

Pos. semidefinite

#P-hard [15,16]

BQP

Subexp. classical [Thin.

2D Constant depth

Hermitian

#P-hard [15, 16]

Subexp. classical [17]

In the rest of the talk | will describe these 3 classical simulation algorithms...
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BPP [Thim. 5]
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Case 1: Single-qubit observables are each close to the identity

Pirsa: 19110130

Quantum cireuit [

Palynominl size

Constant ||t'|l|]\

Constant depth

20 Comstant depth

Observables ()

Pos. semidetinite

Close o [

Pos. semidetinite

Hermitinn

Relative error

#P-hard [16]

P T

#-havd |15, 16]

#P-hard (15, 16]

Subexp. classienl [17]

Additive error

BOP-complete

P [Thin 1]

BoP
Subexp, elassiceal [Thm, 4

BPP [Thin, 5]
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Restricted family of tensor product observables

Suppose U is a depth-d quantum circuit and consider an observable

0:01®02®...®0n

0.001
wnere | Jlo,~ 1]l < o

only on the depth d

For 2D circuits we can replace

} Closeness to identity depends
the RHS with 0(d™")

In this part of the talk we will be interested in obtaining a (highly demanding)
relative error approximation to the mean value

u=(0"|Uto ujom).
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Restricted family of tensor product observables

0.001
25d

W= U0 Ul  0-0,80,@-®0, | [0 1] <

Example

Suppose we consider an output probability of a noisy quantum circuit
W = (or[e®@nut|oyol™) Ulom).
EP)=A—=p)p+pXpX  Flipeach bit with probability p

The noisy mean value is proportional to an ideal mean value:

!/ 1 : ; 1
u = z—nﬂ with single-qubit observables  0; =1 + (1-2p)Z

The above restriction is satisfied in a high noise regime p > % —0(27°%
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Main result

0.001

= T =
p=(OUtouen)y - 0=0180,0-®0, | [o;-1] <=

/ Theorem \

Let§ € (0%) be given. There is a deterministic classical algorithm which
outputs an estimate i satisfying

llog(@) —log(w)| <8
\The runtime of the algorithm is (ns—1)c2*, /

Solves the relative error mean value problem for this restricted set of observables
Runtime can be improved for 2D geometrically local circuits

The algorithm is based on a polynomial interpolation method due to Barvinok...
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Classical simulation by polynomial interpolation

Define a polynomial

f(e) = (0™|uto(e) U|O™) 0(€) = 01(6) ® 02(€) ® - ® Op(€)
Oj(e) =(1—€)l+€0

Note that f(0) = 1 and we aim to compute u = f(1)

Also note that derivatives %) (0) can be computed efficiently for small k

e.g. F(0) = 2(on|UT(0,-—I)U|0”)
=1

Acts nontrivially on < 2¢ qubits
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Classical simulation by polynomial interpolation
@ |

[N
/ =1

Since we know the function value and can compute derivatives at € = 0, it
Is natural to try to use a Taylor series approximation.

Barvinok: use Taylor series for the function g(e) = log(f(€)) instead...
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Classical simulation by polynomial interpolation

Approximate the log by its truncated Taylor series

g(e) — ]()g f(E) We want to compute g(1)

Pk
T,(€) =g(0) + ) 9™ (0)
k=1

4 heorem [Barvinok]

If the polynomial f(¢) is zero-free on the disk |e| < 2 then

-8l Sprm  ldst

o

To achieve error § we need only take p = 0(log(nd~1))

irsa: 19110130
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Classical simulation by polynomial interpolation

g(e) = log f(e)

To use Barvinok’s method we need two ingredients:

1) We need to compute derivatives
g(0), ..., g (0) p = 0(log(nd™"))

These can be computed efficiently from the derivatives f(1(0), ..., £ (0).

2) We need to show that f(¢) is zero-free on the disk |e¢|] < 2 ...
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Zero-free region

f(e) = (0*|UTo(e) U|O™)

0(€) = 01(€) @ 02(€) @ = Q Oy (€)

0i(e) =(1—-e)l+e0

Theorem
Suppose ||Oj — I|| < y. The polynomial f has no zeros in the disk
0.001
€] < 554 — Depth of U

N

Choosing y = 0.001 - 27°>¢"1 suffices to make the disk radius equal to 2.

irsa: 19110130
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Proof sketch (zero-free region)

f(€) = (0"|UT01(e) ® - On(€) U|O™)
Write each 2 x 2 operator 0;(¢) as the upper left block of a 4 x 4 unitary B;(¢)

f(e) = (0*"|(UT® 1B, () ® -+ By (e)(U @ 1)|0%™)

Define  Vj(€) = (UT® NB;(e)(UXI)

The V;(€) each act on 2¢*! qubits

Then f(E) — (02n|V1 (E)Vz (E) Vn(e)|02n> A constant depth circuit

Each gate Is close to identity
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Proof sketch (zero-free region)

A constant-depth circuit

f(E) = (02n|V(E)|02n) V(E) = Vl(E)VZ (E) Vn(e) Each gate is close to identity

Now consider a probability distribution over 2n-bit strings defined by

pe(2) = |(zIV(©)[02)|]

Our goal is to show that pe(Ozn) > ( forall € in the disk...
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Proof sketch (zero-free region)

pe(2) = |(zIV (e)|02M)|”

Let E; be the event that the jth bit is 1. We show that each event {Ej}1<j<2n occurs

with a small probability g = 0(2%y|e|) and is independent of most D = 0(2*4) of
the others...

Pr{Ej] = (02™|V (e)T|11)(1]; V()|0%™) = (0%™|A;|02™)

All gates in V (€) except 0(29)

22d :
of them can be cancelled here. Supported on O(Z ) qubits
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Proof sketch (zero-free region)

pe(2) = |(zIV (e)|02M)|”

Let E; be the event that the jth bitis 1. We show that each event {Ej}1<},<2n occurs

with a small probability g = 0(2%y|e|) and is independent of most D = 0(2*4) of
the others...

The Lovasz Local Lemma then implies p(0?") > 0 as long as

exp(1)-q-D <1 ‘ le] <0(1) 2751
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Can the bound on zero-free radius be improved?

In the worst case it is possible for the zero-free radius to be exponentially small in
the depth:

1002 +11)2) = v]0)**

1
¥) = - (

Depth d

0i(€) =1+€Z  f(e)=|0,(6) @ ® 0,a(e)|)

1 ) ) Has a r_oot at
=—((1+e)2 +(1—e)2) : _in
2 Ep 2d+1

For random circuits the zero free radius is typically much larger...
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Zero-free radius for random unitaries

Consider observables diagonal in the Z-basis:

0j(e) =1+ €Z; f(e) = (0"UT0,(e) ® -+ ® On(e)U[0™)

/Theorem N

Let U be a random quantum circuit drawn from a unitary 2-design
The polynomial f has no zeros in a disk

el <1 —-0(n"1tlog(n))

N\ J
Proof idea
= 1 /n
Write f(e) =1+ Z Cr€X 2-design property gives  E[|c,|?] < 2_”(1{)
k=1

Use to show that w.h.p for € in the disk we have |f(e) —1| <1/2
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Case 2: Positive semidefinite observables

Quantum circuit [ | Observables () Relative error Additive error
Polynomial size Pos. semidefinite #P-lard [16] BOP-complete
Constant depth Close o [ P Thi. 1] I || lun. [:

. ) ) e BQr
Constant depth Pos. semidetinite #P-hard |15, 16] l
- Sl clscnl [Thm
- - #P-hard (15, 1€ A
20 Comstant depth Hermitinn . S l.I - BEP [Thin, 5
Subexp. elassieal [17] : :
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Subexponential time classical algorithm

0=0,®0,®® 0y 0]l =1

ﬁ heorem \

Leté € (O, i) be given. There is a deterministic classical algorithm which
outputs an estimate ji satisfying

|a - |(o"|uTou|omy|| < &

\The runtime of the algorithm is 0“4“Vnlog(6™1), J

In general, the algorithm estimates the absolute value of the mean.

Solves the additive error MVP for pos. semidefinite observables.
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Case 3: 2D shallow circuits

Quantum circuit 7| Observables () Relative error Additive error
Polvnomial size | Pos. semidefinite #P-harel [16] BOP-complete
Constant depth Close o [ I [Thm. 1] |4 || hun. [:

]
. . : BQp
§ i » Tom s y 4 #P-haed [15.16 . -
Constant depth Pos. semidefinite AP [15.16] Subexp. classical [Th, 4
) . #P-hare |15, 1¢ !
20 Comstant depth Hermitinn . . ! l.I - BEP [Thi
Subexp. elassical [17]
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2D shallow circuits

Suppose the qubits are located at the vertices of a 2D grid, and U is a depth d quantum
circuit where each gate acts between nearest-neighbors.

Example:

U= ( l_[ CZU)H®"|O")
(L.))EE
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2D shallow circuits

Suppose the qubits are located at the vertices of a 2D grid, and U is a depth d quantum
circuit where each gate acts between nearest-neighbors.

Example:
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2D shallow circuits

Suppose the qubits are located at the vertices of a 2D grid, and U is a depth d quantum
circuit where each gate acts between nearest-neighbors.

Example:

U= ( l_[ CZU)H@’"lO")
(L.))EE
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2D shallow circuits

Suppose the qubits are located at the vertices of a 2D grid, and U is a depth d quantum
circuit where each gate acts between nearest-neighbors.

0=0,Q0,R® 0, u=(0"|uto ujo™)

/I’ heorem
Leté € (0, %) be given. There is a randomized classical algorithm which, with
probability at least 2/3, outputs an estimate j satisfying

w—pgl<é

whe runtime is O(nd‘zzo(dz)). Linear time!

\

Algorithm is based on an MPS representation and Monte Carlo method...
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2D shallow circuit simulation

Express mean value as amplitude of a 2D constant depth circuit with commuting gates

u=(0"U"0, ® 0, ® - ® 0, U|O")
= (0"|QnQn-1 - Q110™) Qn =UTO;U

Each gate Q; is supported on a 2d X 2d square region centred at qubit j
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2D shallow circuit simulation

u=(0"QnQn-1..Q110™)

Coarse-grain: group the qubits into supersites of size 2d x 2d

é N N

Each gate now acts nontrivially on 1 plaquette consisting of 4 supersites
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2D shallow circuit simulation

Express mean value as inner product between two Matrix Product states

u=(0"QnQn-1 ...Q110™)

= (Peven|Poda)

Pirsa: 19110130
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2D shallow circuit simulation

Express mean value as inner product between two Matrix Product states

u=(0"QnQn-1 ...Q110™)

= (Peven|Poda)
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2D shallow circuit simulation

Express mean value as inner product between two Matrix Product states

u=(0"QnQn-1 ...Q110™)

. ((Devenlq)odd)

\ G
-

D\
N

}\
Inner product between MPS can be estimated in polynomial time using a Monte Carlo
method [Van den Nest 2009]

A\
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Open problems

Big question: what is the complexity of the additive-error mean value problem for
constant-depth circuits?

Can the subexponential-time algorithm be generalized to the case of observables which
may not be positive semidefinite?

Can the 2D algorithm be generalized to higher dimensional lattices?

Other applications of the zero-free region for quantum circuits?
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