Title: Non-invertible anomalies and Topological orders

Speakers: Wenjie Ji

Series: Condensed Matter

Date: November 19, 2019 - 3:30 PM

URL: http://pirsa.org/19110125

Abstract:

It has been realized that anomalies can be classified by topological phases in one higher dimension. Previous studies focus on 't Hooft anomalies of a theory with a global symmetry that correspond to invertible topological orders and/or symmetry protected topological orders in one higher dimension. In this talk, I will introduce an anomaly that appears on the boundaries of (non-invertible) topological order with anyonic excitations [1]. The anomalous boundary theory is no longer invariant under a re-parametrization of the same spacetime manifold. The anomaly is matched by simple universal topological data in the bulk, essentially the statistics of anyons. The study of non-invertible anomalies opens a systematic way to determine all gapped and gapless boundaries of topological orders, by solving simple eigenvector problems. As an example, we find all conformal field theories (CFT) of so-called ``minimal models'', except four cases, can be the critical boundary theories of Z_2 topological order (toric code). The matching of non-invertible anomaly have wide applications. For example, we show that the gapless boundary of double-semion topological order must have central charge c_L=c_R >= 25/28. And the gapless boundary of the non-Abelian topological order described by S_3 topological quantum field theory can be three-state Potts CFT, su(2)_4 CFT, etc. [1] WJ, Xiao-Gang Wen, arXiv: 1905.13279, Phys. Rev. Research 1.033054

Pirsa: 19110125 Page 1/54

Non-invertible Anomalies and Topological Order

Wenjie Ji

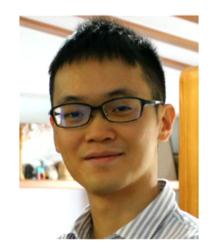
Massachusetts Institute of Technology

Perimeter Institute, Waterloo 2019

[WJ, Xiao-Gang Wen, Phys. Rev. Research 1, 033054]

Pirsa: 19110125 Page 2/54

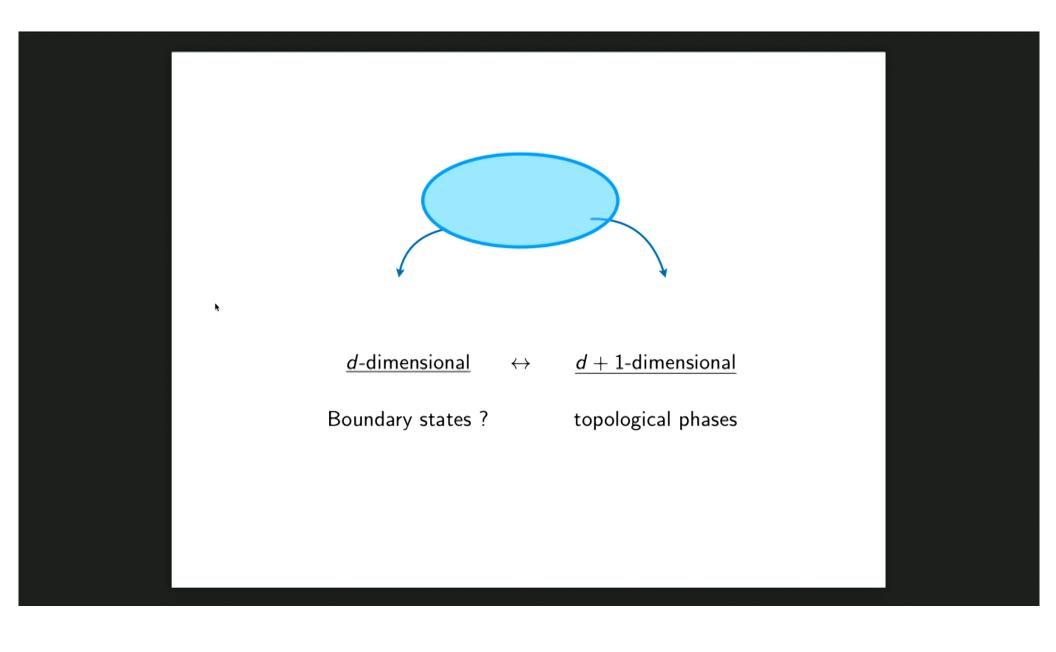
Acknowledgment



Xiao-Gang Wen (MIT)

Shu-Heng Shao (IAS)

Pirsa: 19110125 Page 3/54

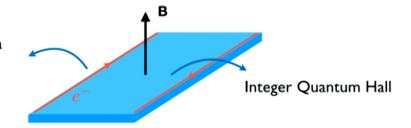


Pirsa: 19110125 Page 4/54

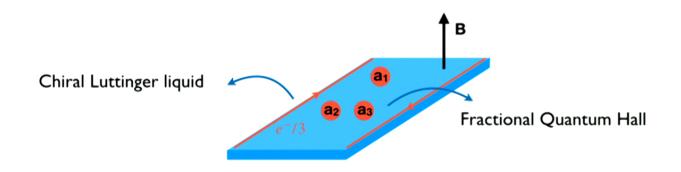
Any additional properties = Anomaly

electron moving in a single direction

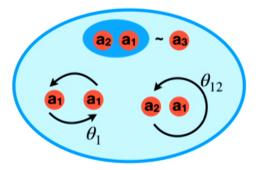
 $H_{\text{bdy}} = i \int dx \psi^{\dagger} \partial_x \psi$



Bulk Topological orders without anyonsBoundary e.x. Integer quantized electric Hall conductance

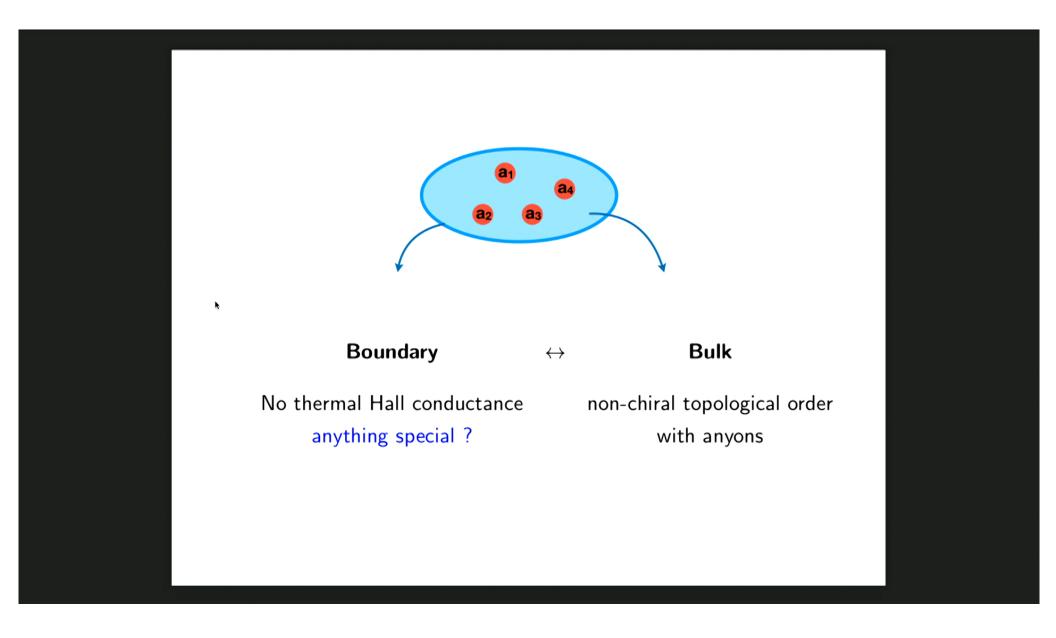


Bulk Topological orders with anyons

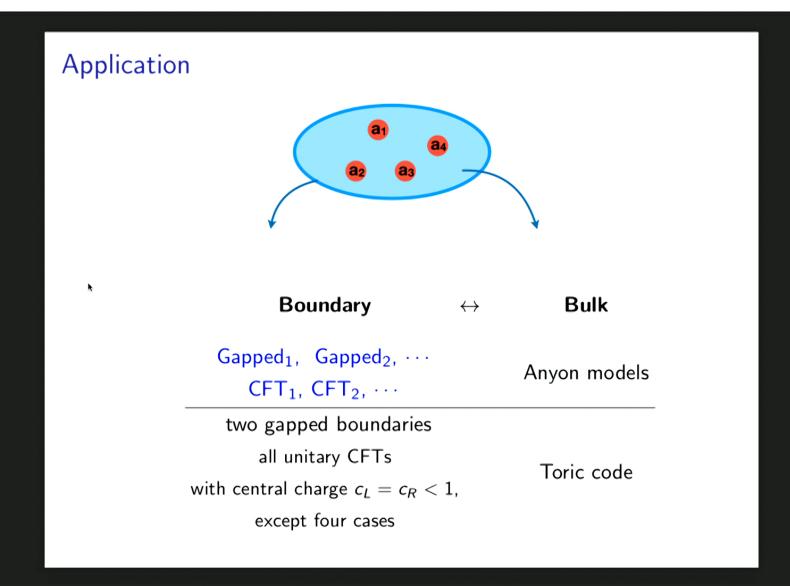


Boundary e.x. Fractional quantized electric Hall conductance thermal Hall conductance

Pirsa: 19110125 Page 6/54



Pirsa: 19110125 Page 7/54



Pirsa: 19110125 Page 8/54

Application

Boundary of anyon model \leftrightarrow Purely 1D

Stability? Different most relevant perturbation

Ising CFT on boundary of toric code Majorana mass term scal. dim. = 1

Transverse Ising model at critical point spin operator scal. dim. $=\frac{1}{8}$

Purely 1D system

Low energy description?

Gapped Count states in the ground states **Gapless/critical** Conformal field theory (CFT)

spin- $\frac{1}{2}$ Heisenberg model o SU(2) CFT c=1 Transverse Ising model o Ising CFT $\mathcal{M}(3,4)$ $c=\frac{1}{2}$

predict specific heat $c_T = \frac{1}{2}$ in certain unit Tricritical Ising model \rightarrow Tricritical Ising CFT $\mathcal{M}(4,5)$ $c = \frac{7}{10}$

CFT predicts specially discrete values of specific heat for 1d critical models.

1D gapless/ critical system

Universal study of 1d critical system

Minimal models $\mathcal{M}(p,p+1)$

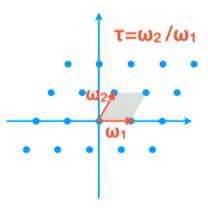
p	c	lattice model		
3	$\frac{1}{2}$	Ising		
4	$\frac{7}{10}$	Tricritical Ising		
5	<u>4</u> 5	Tetracritical Ising, 3-state Potts		
:				

How are they determined?

Pirsa: 19110125 Page 11/54

1+1 d gapless/ critical system

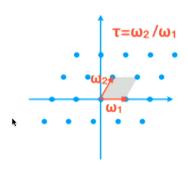
Power Complete spectrum solved, given by partition function on a torus.

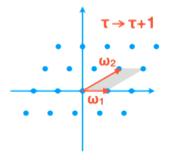


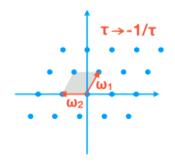
$$Z(\tau, \bar{\tau}) = \text{Tr } e^{-(Im\tau H - i \operatorname{Re} \tau P)} = \sum_{|\phi_i\rangle} \langle \phi_i | e^{-(Im\tau \epsilon_i - i \operatorname{Re} \tau p_i)} | \phi_i \rangle$$

$1{+}1d$ CFT on a torus au

Re-parametrize the same torus, pick a different spacetime unit cell







$$Z(au,ar{ au})$$

$$egin{aligned} \mathcal{T}: Z(au, ar{ au}) &
ightarrow & \mathcal{S}: Z(au, ar{ au}) - \ Z(au+1, ar{ au}+1) & Z\left(-rac{1}{ au}, -rac{1}{ar{ au}}
ight) \end{aligned}$$

$$egin{aligned} \mathcal{T}: Z(au, ar{ au}) &
ightarrow & \mathcal{S}: Z(au, ar{ au})
ightarrow \ Z(au+1, ar{ au}+1) & Z\left(-rac{1}{ au}, -rac{1}{ar{ au}}
ight) \end{aligned}$$

$$Z(\tau+1,ar{ au}+1)=Z(au,ar{ au}) \quad Z(-1/ au,-1/ar{ au})=Z(au,ar{ au})$$
 \Rightarrow Modular invariant

What modular invariance can do?

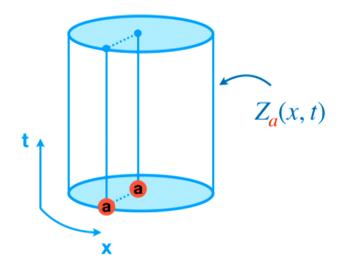
Minimal models $\mathcal{M}(p,p+1)$

р	c	lattice model	
3	$\frac{1}{2}$	Ising	
4	$\frac{7}{10}$	Tricritical Ising	
5	<u>4</u> 5	Tetracritical Ising, 3-state Potts	
:			

Pirsa: 19110125 Page 14/54

Boundary of anyon models

Proper description: Vector of partition functions

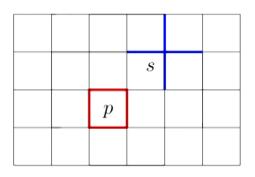


Bulk Boundary

Different anyon Different excitations

Pirsa: 19110125 Page 15/54

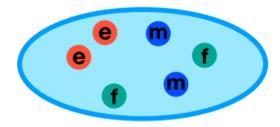
\mathbb{Z}_2 topological order on lattice – Toric code



$$\frac{\sigma_i^x}{\sigma_i^z}$$

$$H = -\sum_{p} g_{p} \left[p \right] - \sum_{s} g_{s} = -\sum_{s} g$$

\mathbb{Z}_2 topological order / Toric code

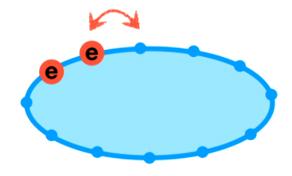


Bulk simple topological data

anyon i=1 e m f self & mutual statistics $T_{ij}^{\mathsf{top}} = \delta_{ij} \bigcirc_{i} / |_{i}$ $S_{ij}^{\mathsf{top}} = \bigcirc_{i}$

Toric code boundary Hamiltonian = Transverse Ising model

Bulk: vacuum

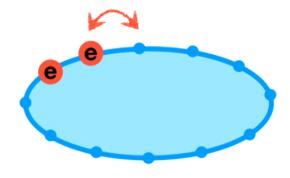


Boundary: Start with *m*-condensed boundary $e \sim f$

Effective Hamiltonian of \bigcirc energy gap U + hop around

$$H = -\frac{U}{2} \sum_{j} \sigma_{j}^{z} - J \sum_{j} \sigma_{j}^{x} \sigma_{j+1}^{x} - \epsilon_{0} L \qquad \sigma_{i}^{z} = \begin{cases} 1 & \text{empty} \\ -1 & \text{occupied by } \end{cases}$$

Bulk: vacuum



Start with *m*-condensed boundary **Boundary:**

Effective Hamiltonian of \bullet energy gap U + hop around

$$H = -rac{U}{2}\sum_{j}\sigma_{j}^{z} - J\sum_{j}\sigma_{j}^{x}\sigma_{j+1}^{x} - \epsilon_{0}L$$
 $\sigma_{i}^{z} = \begin{cases} 1 & \text{empty} \\ -1 & \text{occupied by } \end{cases}$

$$\sigma_i^z = egin{cases} 1 & \mathsf{empty} \\ -1 & \mathsf{occupied} \ \mathsf{by} \end{cases}$$

Global constraint

Total number of e is even Boundary condition

$$\prod_{j} \sigma_{j}^{z} = 1$$
$$\sigma_{N+1}^{x} = \sigma_{1}^{x}$$

Bulk: e-sector



Boundary:

Global constraint

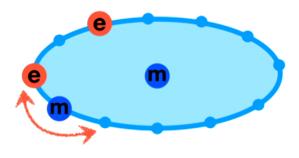
Total number of e is odd

Boundary condition

$$\prod_{j} \sigma_{j}^{z} = -1$$

$$\sigma_{N+1}^{x} = \sigma_{1}^{x}$$

Bulk: m-sector



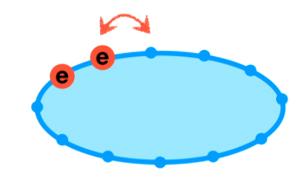
Boundary:

Global constraint

Number of *e* is even Boundary condition

$$\prod_{j} \sigma_{j}^{z} = 1$$
$$\sigma_{N+1}^{x} = -\sigma_{1}^{x}$$

Boundary of \mathbb{Z}_2 topological order



$$H_{\text{bdy}} = -\frac{U}{2} \sum_{j} \sigma_{j}^{z} - J \sum_{j} \sigma_{i}^{x} \sigma_{i+1}^{x}$$

Bulk

e

Boundary constraint

1 Periodic b.c. \mathbb{Z}_2 even

Periodic b.c. \mathbb{Z}_2 odd

m Anti-Periodic b.c. \mathbb{Z}_2 even

Anti-Periodic b.c. \mathbb{Z}_2 odd

$$e = (1, -1)$$
 $m = (-1, 1)$

Bulk Anyon = (\mathbf{Z}_2 flux , \mathbf{Z}_2 charge)

Boundary states = (Bdy condition, charge)

Boundary: vector of partition function

Low energy partition function

$$Z_{\text{anyon }a} = \text{Tr}_{\mathcal{H}_a} e^{-\beta H_a}$$

Low temperature limit $\beta \to \infty$ with fixed $\frac{\beta}{L}$

$$|\phi
angle \ \ {
m is\ gapped} \implies {
m e}^{-\beta \emph{\textbf{E}}_{|\phi
angle}}
ightarrow 0$$

$$|\phi\rangle$$
 is gapless $\Longrightarrow e^{-\frac{\beta}{L}\epsilon_{|\phi\rangle}}$

Boundary partition function of \mathbb{Z}_2 topological order

$$H_{\text{bdy}} = -\frac{U}{2} \sum_{j} \sigma_{j}^{z} - J \sum_{j} \sigma_{i}^{x} \sigma_{i+1}^{x} - \epsilon_{0} L$$

$$Z_{\text{anyon }a} = \text{Tr}_{\mathcal{H}_a} e^{-\beta H_a}$$

Gapped m-condensed boundary $|J| < \frac{U}{2}$

		ı	
Bulk a	Boundary Z_a	states	
1	1	single ground state $\epsilon_0=0$	Z^{m-}
e	0	gapped excitation	
m	1	condensed $\epsilon_{\it m}=\epsilon_{\it 0}$	
f	0	gapped excitation	"Sm

$$Z^{\text{m-condensed}} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

"Smooth boundary" [Kitaev-Kong '12]

Boundary partition function of \mathbb{Z}_2 topological order

$$H_{\text{bdy}} = -\frac{U}{2} \sum_{j} \sigma_{j}^{z} - J \sum_{j} \sigma_{i}^{x} \sigma_{i+1}^{x} - \epsilon_{0} L$$

$$Z_{\text{anyon }a} = \text{Tr}_{\mathcal{H}_a} e^{-\beta H_a}$$

Gapped boundaries

$$|J| < \frac{U}{2}$$

$$Z^{\text{m-condensed}} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$|J| < \frac{\sigma}{2}$$

$$Z^{\text{m-condensed}} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$Z^{\text{e-condensed}} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

"Rough edge"

[Kitaev-Kong '12]

Boundary partition function of \mathbb{Z}_2 topological order

$$Z_{\mathsf{anyon}}\ _{\mathsf{a}} = \mathsf{Tr}_{\mathcal{H}_{\mathsf{a}}} \, \mathrm{e}^{-\beta H_{\mathsf{a}}}$$

Gapless boundaries $J = \frac{U}{2}$

Rough answer: transverse Ising model at critical point = Ising CFT What is Z_a ?

Pirsa: 19110125

Boundary partition function of \mathbb{Z}_2 topological order Gapless boundaries

$$H_{\mathsf{bdy}} = -\sum_{j} (\sigma_{j}^{\mathsf{z}} + \sigma_{i}^{\mathsf{x}} \sigma_{i+1}^{\mathsf{x}}) - \epsilon_{\mathsf{0}} \mathsf{L}$$

$$Z_{\text{anyon } a} = \text{Tr}_{\mathcal{H}_a} e^{-\beta H_a}$$

, Gapless excitations vacuum σ $\psi \bar{\psi}$ μ ψ $\bar{\psi}$

Bulk	Boundary co	onstraint	states	
1	P.b.c. \mathbb{Z}	₂ even	vacuum "0", $\psiar{\psi}$,
e	P.b.c. \mathbb{Z}	2 odd	σ	
m	AP.b.c. Z	\mathbb{Z}_2 even	μ	
f	AP.b.c. 2	\mathbb{Z}_2 odd	ψ , $ar{\psi}$	

[Levin-Wen '03, unpublised, Chen-Jian-Kong-You-Zheng '19]

Vector of partition functions

Bulk Toric code

$$\begin{bmatrix} Z_1 \\ Z_e \\ Z_m \\ Z_f \end{bmatrix} = \begin{bmatrix} |\chi_1|^2 + |\chi_\psi|^2 \\ |\chi_\sigma|^2 \\ |\chi_\mu|^2 \\ \chi_\psi \bar{\chi}_1 + \chi_1 \bar{\chi}_{\bar{\psi}} \end{bmatrix}$$

Gapped boundaries

$$Z^{e-cond} = [1 \ 1 \ 0 \ 0]^T$$
 $Z^{m-cond} = [1 \ 0 \ 1 \ 0]^T$

A vector of partition functions describe various boundaries of anyon model.

vector index = bulk anyon

Construct case by case?

Boundary

 \leftrightarrow

Bulk

More CFTs if add 4-spin interactions?

Toric code

U(1) CFT?

$$K = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$$

Look for

- (i) A schematic way, given a TO/CFT pair, check if there is a solution of vector of partition function.
 - (ii) Independent of particular microscopic construction
- (iii) Something universal about boundary/anyonic bulk correspondence?

Hint from Ising CFT ↔ Toric code

Under modular transformation?

$$Z_{a}(au, ar{ au}) = \sum_{ij} \chi_{i}(au) M_{ij}^{a} ar{\chi}_{j}(ar{ au})$$

$$\chi_i(au+1) = T_{ij}^{\mathsf{CFT}} \chi_j(au) \qquad T^{\mathsf{Is}} = \mathrm{e}^{-\mathrm{i} \, rac{2\pi}{24}} egin{bmatrix} 1 & 0 & 0 \ 0 & \mathrm{e}^{\mathrm{i} \, 2\pi \, rac{1}{2}} & 0 \ 0 & 0 & \mathrm{e}^{\mathrm{i} \, 2\pi \, rac{1}{16}} \end{bmatrix}$$

$$Z_a(au+1,ar{ au}+1) = \sum_{ij} ar{\chi}_i(ar{ au}) \; \widetilde{M}^a_{ij} \; \chi_j(au) \; \; \; \widetilde{M}^a_{ij} = T^{\mathsf{CFT}^\dagger} M^a_{ij} T^{\mathsf{CFT}}$$

Pirsa: 19110125

Hint from Ising CFT \leftrightarrow Toric code

<u>Under modular transformation?</u>

$$Z^{\mathsf{lsing}}{}_{\mathsf{a}}(au+1,ar{ au}+1) = T^{\mathsf{toric}\;\mathsf{code}}{}_{\mathsf{a}\mathsf{b}}Z_{\mathsf{b}}(au,ar{ au})$$

Pirsa: 19110125 Page 31/54

Hint from Ising CFT \leftrightarrow Toric code

<u>Under modular transformation?</u>

$$Z^{ extstyle extstyle extstyle Z_a}(au+1,ar{ au}+1) = T^{ extstyle extstyle extstyle extstyle extstyle Z_b}(au,ar{ au}) \ Z^{ extstyle extstyle extstyle extstyle Z_b}(au,ar{ au}) = S^{ extstyle exts$$

 $Z_{a}(au)$ universal anyon data under modular transformation

How general? Gapped boundaries

Gapped boundaries

$$Z^{e-cond} = [1 \ 1 \ 0 \ 0]^T$$
 $Z^{m-cond} = [1 \ 0 \ 1 \ 0]^T$

$$T^{
m toric\ code}_{\ ab}Z_b=Z_a$$

$$S^{\text{toric code}}{}_{ab}Z_b=Z_a$$

Only two independent eigenvectors

How general? A Luttinger liquid boundary

Bulk Toric code/ \mathbb{Z}_2 topological order

described by
$$U(1)$$
 Chern-Simons theory $K = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$

Boundary U(1) CFT at level 4 c = 1 primaries I = 0, 1, 2, 3

$$\begin{bmatrix} Z_1 \\ Z_e \\ Z_m \end{bmatrix} = \begin{bmatrix} |\chi_0|^2 + |\chi_2|^2 \\ |\chi_1|^2 + |\chi_3|^2 \\ \chi_1\bar{\chi}_3 + \chi_3\bar{\chi}_1 \\ \chi_0\bar{\chi}_2 + \chi_2\bar{\chi}_0 \end{bmatrix}$$

$$Z^{U(1)}{}_{a}(au+1,ar{ au}+1) = T^{ ext{toric code}}{}_{ab}Z_{b}(au,ar{ au})$$
 $Z^{U(1)}{}_{a}(-1/ au,-1/ar{ au}) = S^{ ext{toric code}}{}_{ab}Z_{b}(au,ar{ au})$

A 1 + 1d theory with *non-invertible anomaly*

1. defined on a space-time torus $\boldsymbol{\tau}$, it has a multi-component partition function

$$Z_a(au, ar{ au})$$

2. under torus re-parametrization $\mathcal{T}: \ \tau \to \tau+1, \ \mathcal{S}: \ \tau \to -\frac{1}{\tau}$ $Z_a(\tau,\bar{\tau})$ transform covariantly according to 2+1d topological data {anyon a} anyon self-statistics \mathcal{T}^{top} mutual statistics \mathcal{S}^{top}

$$T_{ab}^{\mathrm{top}}Z_b(au,ar{ au}) = Z_b(au+1,ar{ au}+1)$$
 $S_{ab}^{\mathrm{top}}Z_b(au,ar{ au}) = Z_b\left(-rac{1}{ au},-rac{1}{ar{ au}}
ight)$

Non-invertible anomaly = canceled by the 2 + 1d (non-invertible) topological order

An intuition about T transformation

Rotate 2π and glue back

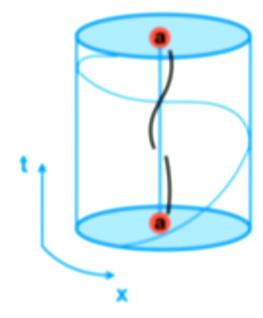
t x

Purely 1D ring nothing change

Pirsa: 19110125 Page 36/54

An intuition about T transformation

Rotate 2π and glue back



A boundary ring anyon self-rotate and accumulate a phase

Page 39 of 61

Pirsa: 19110125 Page 37/54

Construct case by case?

Boundary

 \leftrightarrow

Bulk

More CFTs if add 4-spin interactions?

Toric code

$$U(1)$$
 CFT?

$$K = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$$

Look for

- (i) A schematic way, given a TO/CFT pair, check if there is a solution of vector of partition function.
 - (ii) Independent of particular microscopic construction
- (iii) Something universal about boundary/anyonic bulk correspondence?

CFT/TO pair

Pick a CFT Fix an anyon model

Solve an eigenvector problem for M_{ai} , a labels anyon, i labels primaries.

$$T_{ab}^{ ext{top}} (T^{ ext{CFT}})_{ij}^* M_{bj} = M_{ai}$$

 $S_{ab}^{ ext{top}} (S^{ ext{CFT}})_{ij}^* M_{bj} = M_{ai}$

CFT/TO pair

 $\textbf{Boundary} \ \leftrightarrow \qquad \qquad \textbf{Bulk}$

Pick a CFT Fix an anyon model

Solve an eigenvector problem for M_{ai} , a labels anyon, i labels primaries.

$$T_{ab}^{ ext{top}} (T^{ ext{CFT}})_{ij}^* M_{bj} = M_{ai}$$

 $S_{ab}^{ ext{top}} (S^{ ext{CFT}})_{ij}^* M_{bj} = M_{ai}$

More critical boundaries of toric code

Tricritical Ising
$$\mathcal{M}(4,5)$$
 $c_L = c_R = \frac{7}{10}$

$$\frac{I \quad \mathbf{1} \quad \sigma \quad \sigma' \quad \epsilon \quad \epsilon' \quad \epsilon''}{h_I \quad 0 \quad \frac{3}{80} \quad \frac{7}{16} \quad \frac{1}{10} \quad \frac{3}{5} \quad \frac{3}{2}}$$

$$\begin{bmatrix} Z_{1} \\ Z_{e} \\ Z_{m} \\ Z_{f} \end{bmatrix} = \begin{bmatrix} |\chi_{0}|^{2} + |\chi_{\frac{1}{10}}|^{2} + |\chi_{\frac{3}{5}}|^{2} + |\chi_{\frac{3}{2}}|^{2} \\ |\chi_{\frac{7}{16}}|^{2} + |\chi_{\frac{3}{80}}|^{2} \\ |\chi_{\frac{7}{16}}|^{2} + |\chi_{\frac{3}{80}}|^{2} \\ \chi_{0}\bar{\chi}_{\frac{3}{2}} + \chi_{\frac{1}{10}}\bar{\chi}_{\frac{3}{5}} + \chi_{\frac{3}{5}}\bar{\chi}_{\frac{1}{10}} + \chi_{\frac{3}{2}}\bar{\chi}_{0} \end{bmatrix}$$

General critical boundaries of toric code

All minimal models, except 4 cases $(\mathcal{M}(p,p+1) \text{ with } p=17,18,29,30)$

can be the gapless boundary of \mathbb{Z}_2 topological order.

Pirsa: 19110125 Page 42/54

Prediction

Stability: most relavant term in the vacuum sector Z_1 .

$$\begin{bmatrix} Z_{\mathbf{1}} \\ Z_{e} \\ Z_{m} \\ Z_{f} \end{bmatrix} = \begin{bmatrix} |\chi_{\mathbf{1}}|^{2} + |\chi_{\psi}|^{2} \\ |\chi_{\sigma}|^{2} \\ |\chi_{\mu}|^{2} \\ \chi_{\psi}\bar{\chi}_{\mathbf{1}} + \chi_{\mathbf{1}}\bar{\chi}_{\bar{\psi}} \end{bmatrix}$$

Compare with 1d Ising chain $Z = |\chi_1|^2 + |\chi_\sigma|^2 + |\chi_\psi|^2$

In general more stable than CFT in purely 1D, since some excitations are projected out.

Example: Double semion topological order

$$\frac{i \ \mathbf{1} \ s \ s^* \ b}{\theta_i \ \mathbf{1} \ \mathrm{e}^{\mathrm{i} \, 2\pi \, \frac{1}{4}} \ \mathrm{e}^{-\mathrm{i} \, 2\pi \, \frac{1}{4}} \ \mathbf{1}}$$

k

Boundary

Gapped $Z^T = [1 \ 0 \ 0 \ 1]$ boson condensed

Bulk

Effective theory U(1) Chern-Simons theory with a $K = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$ matrix

Boundary $u(1)_2$ $c_L = c_R = 1$

 $\frac{I \quad 0 \quad 1}{h_I \quad 0 \quad \frac{1}{4}}$

$$\begin{bmatrix} Z_1 \\ Z_s \\ Z_{s*} \\ Z_b \end{bmatrix} = \begin{bmatrix} |\chi_0|^2 \\ \chi_1 \bar{\chi}_0 \\ \chi_0 \bar{\chi}_1 \\ |\chi_1|^2 \end{bmatrix}$$

<u>Prediction I</u> No relevant perturbation, from $Z_1 = |\chi_0|^2$. exists marginal perturbation in $|\chi_0|^2$

Boundaries of double semion topological order

For a RCFT to be the boundary theory of a topological order, it must have primary fields J with

$$\mathrm{e}^{\mathrm{i}\,2\pi(h_L^J-h_R^J)}= heta_j$$

For double semion bulk, no minimal model solution for p < 7. Gapless boundaries of 2+1D double semion topological order must have central charge

$$c \geq \frac{25}{28}$$

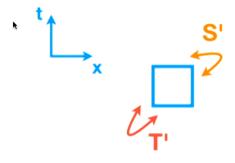
A basis transformation

Example: \mathbb{Z}_2 topological order

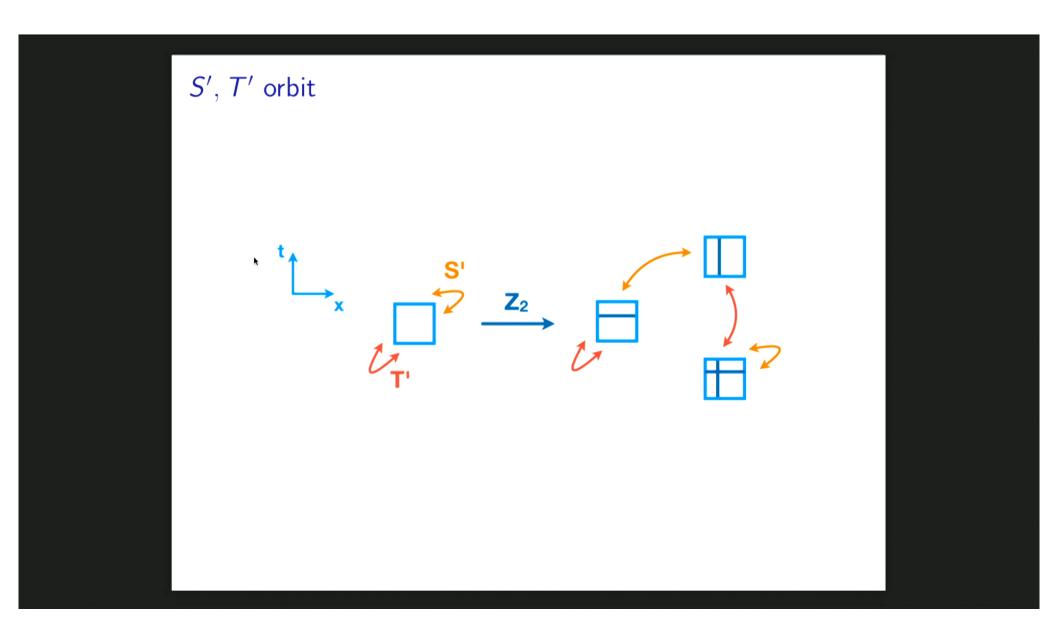
$$Z^{ls} = \begin{bmatrix} |\chi_{1}|^{2} + |\chi_{\psi}|^{2} \\ |\chi_{\sigma}|^{2} \\ |\chi_{\mu}|^{2} \\ \chi_{\psi}\bar{\chi}_{1} + \chi_{1}\bar{\chi}_{\bar{\psi}} \end{bmatrix} \xrightarrow{M = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}} Z^{ls'} = \begin{bmatrix} |\chi_{1}|^{2} + |\chi_{\sigma}|^{2} + |\chi_{\psi}|^{2} \\ |\chi_{1}|^{2} - |\chi_{\sigma}|^{2} + |\chi_{\psi}|^{2} \\ |\chi_{\psi}\bar{\chi}_{1} + \chi_{1}\bar{\chi}_{\bar{\psi}} + |\chi_{\mu}|^{2} \\ -\chi_{\psi}\bar{\chi}_{1} - \chi_{1}\bar{\chi}_{\bar{\psi}} + |\chi_{\mu}|^{2} \end{bmatrix}$$

$$S' = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} \hspace{5mm} \mathcal{T}' = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{bmatrix}$$

A CFT with an anomaly free \mathbb{Z}_2 symmetry



Pirsa: 19110125 Page 48/54



Pirsa: 19110125 Page 49/54

An inverse basis transformation

$$\begin{bmatrix} Z_1 \\ Z_e \\ Z_m \\ Z_f \end{bmatrix} = M^{-1} \begin{bmatrix} \Box \\ \Box \\ \Box \\ \Box \end{bmatrix}$$

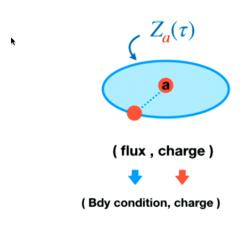
Take-away Given any modular invariant CFT with an anomaly free \mathbb{Z}_2 symmetry, there exists a modular covariant CFT as the boundary of \mathbb{Z}_2 topological order.

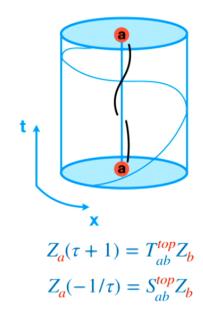
Minimal model $\mathcal{M}(p, p+1)$

- All minimal models, except 4 cases¹ can be the gapless boundary of \mathbb{Z}_2 topological order. The most stable one has central charge $c=\frac{1}{2}$.
- ▶ The critical 3-Potts model and tricritical 3-Potts model can be the gapless boundary of \mathbb{Z}_3 topological order and S_3 topological order.
- ▶ The gapless boundary of all other (untwisted) topological order with discrete gauge group G has central charge $c \ge 1$.

Pirsa: 19110125 Page 51/54

Non-invertible anomaly and Anyon models





Non-invertible anomaly

Good for

schematic TO/CFT pair through eigenvector equation

universal Z_2 anomaly free CFT \Rightarrow Toric code boundary

Boundary of anyon models are more stable

Pirsa: 19110125 Page 53/54

Open remarks

- ► Examples are known yet that a faithful set of gapless
- boundary theories requires the mapping class group transformation on higher genus?
- ► Lattice construction for gapped and gapless boundaries ?
- Relation between invertible and non-invertible anomaly (to appear)

Pirsa: 19110125 Page 54/54