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Abstract:

It has been realized that anomalies can be classified by topological phases in one higher dimension. Previous studies focus on &€™t Hooft anomalies
of a theory with a global symmetry that correspond to invertible topological orders and/or symmetry protected topological orders in one higher
dimension. In thistalk, | will introduce an anomaly that appears on the boundaries of (non-invertible) topological order with anyonic excitations [1].
The anomalous boundary theory is no longer invariant under a re-parametrization of the same spacetime manifold. The anomaly is matched by
simple universal topological data in the bulk, essentially the statistics of anyons. The study of non-invertible anomalies opens a systematic way to
determine all gapped and gapless boundaries of topological orders, by solving simple eigenvector problems. As an example, we find all conformal
field theories (CFT) of so-called "minimal model sSf€™&E™, except four cases, can be the critical boundary theories of Z_2 topological order (toric
code). The matching of non-invertible anomaly have wide applications. For example, we show that the gapless boundary of double-semion
topological order must have central charge ¢ L=c R &qgt;= 25/28. And the gapless boundary of the non-Abelian topological order described by S 3
topological quantum field theory can be three-state Potts CFT, su(2) 4 CFT, etc. [1] WJ, Xiao-Gang Wen, arXiv: 1905.13279, Phys. Rev. Research
1,033054
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d-dimensional “ d + 1-dimensional

Boundary states ? topological phases
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5 d-dim —

Any additional properties = Anomaly

electron moving in a
single direction

- Integer Quantum Hall
Hyay =1 / dapt o,

Bulk Topological orders without anyons

Boundary e.x. Integer quantized electric Hall conductance

Page 5/54



Bulk Topological orders with anyons

L3

Boundary e.x. Fractional quantized electric Hall conductance

thermal Hall conductance
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Boundary Bulk

No thermal Hall conductance non-chiral topological order

anything special ? with anyons
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Application

Boundary Bulk

Gapped;, Gappeds, ---
CFTy, CFTy, - -

two gapped boundaries
all unitary CFTs

Anyon models

_ Toric code
with central charge ¢, = cg < 1,

except four cases
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Application

!— d-dim —

Boundary of anyon model <« Purely 1D

Stability? Different most relevant perturbation

Ising CFT Transverse Ising model

on boundary of toric code at critical point
Majorana mass term spin operator

scal. dim. =1 scal. dim. = %
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Purely 1D system

Low energy description?
Gapped Count states in the ground states
Gapless/critical Conformal field theory (CFT)

spin-3 Heisenberg model — SU(2) CFT ¢ =1
Transverse Ising model — Ising CFT  M(3,4) c= 3

—4—4—4 4

predict specific heat c1 = % in certain unit
Tricritical Ising model — Tricritical Ising CFT M(4,5) ¢ =

—o—4—4

CFT predicts specially discrete values of specific heat for 1d critical

models.
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1D gapless/ critical system

Universal study of 1d critical system
Minimal models M(p,p + 1)

lattice model

O

Ising
Tricritical Ising

Tetracritical Ising, 3-state Potts

O~ AN

How are they determined?
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1+1 d gapless/ critical system

Power Complete spectrum solved, given by partition function on a torus.

7'.) — Tr (:!*(a‘m-rH—i ReTP) _ ZM);) <d)ile—(fm7’(,-—i Re -TP;)Id)i>
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14+1d CFT on a torus 7

Re-parametrize the same torus, pick a different spacetime unit cell

T:Z(1,7) >

Z(r,7
(. 7) Z(r+ 1,7 +1)

Z(r+ 1,74 1)=2(r,7) Z(-1/7,-1/7) = 2Z(71,7T)

= Modular invariant
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What modular invariance can do?

Minimal models M(p,p + 1)

lattice model

0

Ising

Tricritical Ising

p—
TN =~ NI NI

Tetracritical Ising, 3-state Potts
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Boundary of anyon models

Proper description : Vector of partition functions

Bulk Boundary

Different anyon Different excitations
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7, topological order on lattice — Toric code
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7, topological order / Toric code

L

Bulk simple topological data

anyon i =1 e m f

self & mutual statistics T,;()p = 0jj Of/lf Sitjop = Q@j

(100 0
010 0
001 0
000 -1

1
1
1
1
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Effective boundary Hamiltonian of toric code

Bulk: vacuum

Boundary:  Start with m-condensed boundary e~ f
Effective Hamiltonian of @ energy gap U + hop around

He S o U wor ol
24 . j %1 50 —1  occupied by @
J J
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Effective boundary Hamiltonian of toric code
¥

Bulk: vacuum

* Boundary:  Start with m-condensed boundary

Effective Hamiltonian of @ energy gap U + hop around

1 empty

ZU _JZ ;01— v —1 occupied by @

Global constraint

Total number of e is even

Boundary condition

Page 19/54



Effective boundary Hamiltonian of toric code

Bulk: e-sector

Boundary:

Global constraint

Total number of e is odd

Boundary condition
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Effective boundary Hamiltonian of toric code

Bulk: m-sector

Boundary:

Global constraint

Number of e is even

Boundary condition
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Boundary of 7, topological order

K

Hpdy = —% Zﬁf = JZUE(U?H
J J

Boundary constraint
e=(1,-1) m=(-1,1)

Bulk Anyon = ( Z, flux , Z, charge )
Periodic b.c. Z, odd A4 A4

Boundary states = ( Bdy condition, charge )

Periodic b.c. 77 even

Anti-Periodic b.c. Z, even

Anti-Periodic b.c. 7, odd
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Boundary: vector of partition function

Low energy partition function

Low temperature limit 3 — oo with fixed %
) is gapped = ¢ PEio) 0

: 8
|¢)> IS gapless —= ¢ L[Cl¢)
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Boundary partition function of Z, topological order

Hypay = — Z(T —JZ(T Oiy —

—3H,
Zanyon a— Tr’H.a € !

Gapped m-condensed boundary  |J| < ¥

k

Bulk a| Boundary Z, states

Zm—condensed o

single ground state ¢g = 0

gapped excitation

condensed ¢, = €
“Smooth boundary”
[Kitaev-Kong '12]

gapped excitation
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Boundary partition function of Z, topological order

U _
Hyay = Ty Za_f - JZﬁfJfH — ol
J J

—3H.
Zanyon a— Tr’H.a € '

Gapped boundaries

U
J] < 3

Zm—condensed _ Ze—condensed —

0 0

“Smooth edge” “Rough edge”

[Kitaev-Kong "12]
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Boundary partition function of Z, topological order

Zanyon a — TF’HR (\7KJH3

Gapless boundaries J = %

Rough answer: transverse Ising model at critical point = Ising CFT

What is Z,?
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Boundary partition function of 7, topological order
Gapless boundaries

Hbdy = — Z(Uf + (Tf(ff+1) — E()L
F

—3H.
Zanyon a— Tr’Hg € '

. Gapless excitations vacuum o b0 p 1) 1)

Bulk | Boundary constraint states

1 P.b.c. 7, even [|vacuum "0", 1)
Pb.c. Zj odd
AP.b.c. 7, even
AP.b.c. 7Z-, odd

[Levin-Wen '03, unpublised, Chen-Jian-Kong-You-Zheng '19]
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Vector of partition functions

Bulk Toric code
Gapless boundaries Ising CFT

|'-X'"ﬂ |2
’.\"11-’2

| Xy X1+ X1Xj |

Gapped boundaries
Ze—cond _ [1 10 O]T Zm—cond _ [1 01 O]T

A vector of partition functions describe various boundaries of

anyon model. vector index = bulk anyon
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Construct case by case?
Boundary Bulk

More CFTs if add 4-spin interactions? Toric code
0 2
2 0

U(1) CFT?

Look for
(i) A schematic way, given a TO/CFT pair, check if there is a

solution of vector of partition function.

(ii) Independent of particular microscopic construction

(iii) Something universal about boundary/anyonic bulk

correspondence?
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Hint from Ising CFT <+ Toric code

Under modular transformation?

Za(7,7) = 2o xi(T) M X;(7)

: 27

xi(r+1) = T-"JCFTXJ'(T) T = ¢ 1%

Z(r+ 1,7 +1) = > 0(F) Mi xj(r) M3 = TFT ma 7T
ij
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Hint from Ising CFT <+ Toric code

Under modular transformation?

leinga(,r + 1.7+ 1) - Ttoric COdeabe(Ta 7—_)

Pirsa: 19110125 Page 31/54



Hint from Ising CFT <+ Toric code

Under modular transformation?

leinga(,r + 1_, 74 ]_) :Ttoric codeabe(T’ f)
Zl-s,ing;&(_]_/?.q _]_/7'—) :Storic COdeabe(T’ 7:)

Boundary Bulk

Z,(7)

' universal anyon data
under modular transformation
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How general? Gapped boundaries

Gapped boundaries
Ze:cond — [1 10 O]T Zm—cond - [1 01 O]T

Ttoric codeabzb _ Za

toric code
S abe — Za

Only two independent eigenvectors
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How general? A Luttinger liquid boundary
Bulk Toric code/Z; topological order

described by U(1) Chern-Simons theory K =

Boundary U(1) CFT at level 4 ¢ =1 primaries | =0, 1,

L3

- -
Ixo|® + |x2]

2 2
x|+ |x3]

X1X3 + X3X1

| X0X2 + X2Xo

ZU(l)a(T +1,7+1) — Ttoric COdeabe(T, 7)
ZU(l)a(—l/T, —]./7") :Storic COdeabe(T, 7-_)
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A 1+ 1d theory with non-invertible anomaly

1. defined on a space-time torus 7 , it has a multi-component
partition function

Z(r,7) W

2. Under torus re-parametrization 7: 7 5 7+1, S: 7— -1

Z,(7,7) transform covariantly according to 241d topological data

{anyon a}  anyon self-statistics TP mutual statistics S*P

TP Zy(1,7) =Zp(T + 1,7 + 1)

S;szb("f, ’F) —

Non-invertible anomaly = canceled by the 2 + 1d (non-invertible)
topological order
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An intuition about T transformation

Rotate 27 and glue back

Purely 1D ring  nothing change
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An intuition about T transformation

Rotate 27 and glue back

A boundary ring anyon self-rotate and accumulate a phase
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Construct case by case?
Boundary Bulk

More CFTs if add 4-spin interactions? Toric code
0 2
2 0

U(1) CFT?

Look for
(i) A schematic way, given a TO/CFT pair, check if there is a

solution of vector of partition function.

(ii) Independent of particular microscopic construction

(iii) Something universal about boundary/anyonic bulk

correspondence?
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CFT/TO pair

Boundary <« Bulk

\ Pick a CFT Fix an anyon model

Solve an eigenvector problem for M,;, a labels anyon, i labels

primaries.

T;zp (TCFT)E- Mbj :Ma,‘
Sul (SSTTY5 My =M
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CFT/TO pair

Boundary <« Bulk

\ Pick a CFT Fix an anyon model

Solve an eigenvector problem for M,;, a labels anyon, i labels

primaries.

T;zp (TCFT)E- Mbj :Ma,‘
Sul (SSTTY5 My =M
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More critical boundaries of toric code

Tricritical Ising M(4,5) ¢ = cr = 17*0

| 1 o o

h; 0O

Ixol2 + Ix)?+ |x3)? +|x:)?
10 5 2

|X1 |2 -+ ’Xi ’2
16 80

X2 |?+|xs
16 80
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General critical boundaries of toric code

L3
All minimal models, except 4 cases

(M(p, p + 1) with p = 17,18, 29, 30)

can be the gapless boundary of Z; topological order.
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Prediction

Stability: most relavant term in the vacuum sector Zj.

[ 2 2
X1l + [xyl
2

|Xr7|
| X | ?

| Xy X1+ X1X |

| 2

Compare with 1d Ising chain  Z = |x1]* + |xo|° + X

In general more stable than CFT in purely 1D, since some

excitations are projected out.
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Example: Double semion topological order

Bulk

Boundary
Gapped Z" =[1001] boson condensed
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Bulk
0

0 -2

Effective theory U(1) Chern-Simons theory with a K =

Boundary u(l), ¢ =cgr=1

I 01

-
| X0

X1X0
X0X1

2
X1l ]

Prediction | No relevant perturbation, from Z; = |xol°.

exists marginal perturbation in |xol?
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matrix
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Boundaries of double semion topological order

For a RCFT to be the boundary theory of a topological order, it

must have primary fields J with

9. J_pJ
(}12rr(ht hR) — (}J

For double semion bulk, no minimal model solution for p < 7.
Gapless boundaries of 2+1D double semion topological order must

have central charge

25
28

c >
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A basis transformation

Example: Z; topological order

7 - 5
F a“

X1 + [xo P + |xu

[ al® + [xy

2
Xo | X112 = Ixa|? + |xu
|2

2
‘ “

X u Xy X1+ X1Xy + X

5
| “

[ Xy X1+ X1Xy =Xy X1 — X1+ IXp]”
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A CFT with an anomaly free Z, symmetry
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S', T orbit
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An inverse basis transformation

Take-away Given any modular invariant CFT with an anomaly
free Zy symmetry, there exists a modular covariant CFT as the

boundary of Z, topological order.
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Minimal model M(p,p + 1)

1

All minimal models, except 4 cases™ can be the gapless

boundary of Z, topological order. The most stable one has

_1
central charge ¢ = 3.

The critical 3-Potts model and tricritical 3-Potts model can
be the gapless boundary of Z3 topological order and S3

topological order.

The gapless boundary of all other (untwisted) topological

order with discrete gauge group G has central charge ¢ > 1.
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Non-invertible anomaly and Anyon models

Z (1)

¢ %

( flux , charge)

vy 3

. 1o
( Bdy condition, charge ) Z”(T +1) = Tuhf Z‘r’

er(_ I /T) — Sm’}xh

“ab
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Non-invertible anomaly

Gobd for
schematic

universal

TO/CFT pair through eigenvector equation
Z> anomaly free CFT = Toric code boundary

Boundary of anyon models are more stable
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Open remarks

» Examples are known yet that a faithful set of gapless
" boundary theories requires the mapping class group

transformation on higher genus?
» Lattice construction for gapped and gapless boundaries ?

» Relation between invertible and non-invertible anomaly

(to appear)
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