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Abstract: Measurement-based quantum computation (MBQC) is a computational scheme to simulate spacetime dynamics on the network of
entanglement using local measurements and classical communication. The pursuit of a broad class of useful entanglement encountered a concept of
symmetry-protected topologically ordered (SPTO) phases in condensed matter physics. A natural question is "What kinds of SPTO ground states
can be used for universal MBQC in a similar fashion to the 2D cluster state?' 2D SPTO states are classified not only by global on-site symmetries
but also by subsystem symmetries, which are fine-grained symmetries dependent on the lattice geometry. Recently, all ground states within SPTO
cluster phases on the square and hexagonal |attices have been shown to be universal, based on the presence of subsystem symmetries and associated
structures of quantum cellular automata. Motivated by this observation, we analyze the computational capability of SPTO cluster phases on all
vertex-trandative 2D Archimedean lattices. We show that there are four different "fundamental” subsystem symmetries, called here ribbon, cone,
fractal, and 1-form symmetries, for cluster phases, and the former three types one-to-one correspond to three classes of Clifford quantum cellular
automata. We conclude that nine out of the eleven Archimedean lattices support universal cluster phases protected by one of the former three
symmetries, while the remaining lattices with the 1-form symmetry have a different capability related to error correction.

Pirsa: 19110119 Page 1/29



Matter, Symmetry, Resource Workshop @ PI, November 26 (2019)

Symmetry-protected topologically ordered
phases for measurement-based quantum
computation

Akimasa Miyake
& CQuiC

I CQUIC, University of New Mexico




(Incomplete) zoo of universal entanglement for MBQC

Resource question: what is an entanglement resource useful for computation?
graph states, connection to graph theory
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(Incomplete) zoo of universal entanglement for MBQC
Resource question: what is an entanglement resource useful for computation?

gra ph states, connechon to graph theory

AKLT states by two- body Hamiltonian (with
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tensor network states
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symmetry-protected topologically ordered

(SPTO) phase
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Motivation of the talk

Nature isn’t classical, and seems to have an own way to make computation robust

computation withguantum erorcomection~ computaionina computatonl e o mter

robust against a few arbitrary local errors under robust against “symmetric” errors

assumption of locality of errors and Markovianity  (similar to decoherence free subspace)

stabilizer subspace by discretization of Pauli errors, ground states in a phase, whose

given non-Clifford resources like magic states macroscopic features are common.
ground states are not stabilizer states

epsilon neighborhood of pure-state computation  gate sequence is insensitive to states,
and very low uncertainty/entropy and only overhead differs. Any mixed state

by mixture of ground states works as well.
Real QC devices may encounter global

crosstalk (e.g., ion traps) and 1/f noise Progress for universal MBQC,
(e.g., transmons). -> complementary approach but no fault-tolerance results yet.
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Symmetry-protected topological order
SPTO by spin-1/2 systems on a lattice

* Symmetry
* Family of states with a common symmetry
* Generally consider finite abelian groups (G such as copies of Z5 .

* Global symmetries act in an “on-site” manner.

u(g) = Onsite representation

S5(9) = ulg) ulg) )

S(g) = Global representation

» X -type symmetries of cluster states define SPTO.
* Want to do MBQC in a way that is compatible with symmetry.
* Mainly restrict to X- measurements. (non-network MBQC without Z-measurement)
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Symmetry-protected topological order

* Topological
* For periodic boundary conditions the ground state is unique

N *Local Hamiltonian terms
L H=— E Zj—lXij-i-l give complete set of

j=1 commuting observables.

invariant under global X’s ( Z,), or even-site X’s and odd-site X's (Z5 x Z5)

* Degeneracy of ground states occurs for open boundary (fractionalized edge states)

66 6o - ==Y Zi1XiZin
=2
xL — X175 ~ ®; X241 mlélaté?undar‘y correspondence in
ZL = 41 ~ ®jX2j universality at boundary in terms

of bulk symmetric entanglement
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Symmetry-protected topological order

* Topological considerations of symmetry

* For 1D SPTO the symmetry is represented projectively at the boundary
ZQ X ZQ

Linear Representation - u(g)u(h) = u(gh)
Linear Rep. » .CUy =2

Projective Representation —» V(g)V(h) = w(g, h)V(gh)

Projective Rep. » XY = ’I,Z

where w(g,h) € U(1)

* The only non-trivial projective representation of Z> x Z3 is equivalent to the
Pauli matrices.

* For each copy of Z» x 7, we get a qubit degree of freedom at the edge!

Chen, Gu, Wen, PRB 83, 035107 (2011).
Schuch, Pérez-Garcia, Cirac, PRB 84, 165139 (2011).
Pollmann, Berg, Turner, Oshikawa, PRB 85, 075125 (2012).
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Phase of symmetry-protected topological order

* Symmetry-protected

* No symmetry respecting perturbation can lift the degeneracy.
* Ground states in same phase related by a symmetric local unitary (SLU).

* No intrinsic topological order!
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u(g)

u(g)4

constant-depth local quantum circuit
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Chen, Gu, Wen, PRB 82, 1555138 (2010).
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Symmetries of 2D cluster states

* Cluster states have many fancy symmetries
* Biggest symmetry group is full stabilizer group.
S={X, R 2 |vo})
X X X
leN (v)

* Smallest is global Z5 symmetry.
* Apply all stabilizers!
* One symmetry generator

*Note for odd degree lattice the action is a global Y .
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From 2D to quasi-1D

NEW: Raussendorf, Okay, Wang, Stephen, Nautrup, PRL 122, 090501 (2019)

* Embed a 2D lattice cluster state on a torus and group together an
nXxXn block of sites.

K

VAAVAVAYAY:
ATAVATAAVA
CAVATAVATAYATA
WAVASAAVATA

X

* Periodic structure of 72" subsystem
symmetry contained within each
tensor!
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early works in Haldane phase

M BQC with the D hase Miyake, PRL 105, 040501 (2010)

Bartlett, Brennen, Miyake, Renes,
PRL 105, 110502 (2010)

* Consider all states connected by an SLU to the cluster state (RG fixed
point state).

|9) = Uglypc) = U, = polynomial

parameters

* In the quasi-1D picture (by contracting a spatial direction),

Jun -[
2 i
Logica j
\

One period of QCA cycles Meésur'ement in superposition
basis will couple subsystems
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arXiv:1907.13279

working with

Austin Daniel
Rafael Alexander
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When 2D SPTOs meet lattice geometry

Archimedean lattices: 11 vertex translative lattices in 2D (each vertex locally looks the same).
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(6%)* (3,4,6,4)

(3°.4%

N7/ N7/X

(4, 82) (1, 6., 12)

(3,12%)

~ *Previously known

Raussendorf et al.,
PRL 122, 090501 (2019)
Devakul, Williamson
PRA 98, 022332 (2018)
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 1/k-Fractional symmetry.
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Symmetries of cluster states

* On a k-colorable graph, apply stabilizers on each vertex of a given color.

ZQXZQXZQ

P

k-colorable

\
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Symmetries of cluster states

* Subsystem symmetry

* Apply stabilizer on some site. Try to add as few more to cancel all /’s.
* Periodic structure for periodic boundaries.

* There are three fundamental symmetries: Ribbon, Cone, Fractal
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Symmetries of cluster states

* 1-form symmetry.
* Closed loops of X - operators.
* Deformable = Product of two loops is a bigger loop
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Convenient tensor networks for 2D cluster states

As opposed to...

i

* Think of 2D cluster state as coupled 1D cluster states. SR

[ —
: :iizﬁ:: 1z - 4
TR

e X- basis measurements turn the TN into a Clifford quantum cellular automaton.

e

H

fala=T
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Raussendorf, Okay, Wang, Stephen, Nautrup,
PRL 122, 090501 (2019)
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e Clifford QCA can be classified into 3 types.

Periodic

* Period is constant and

independent of
system size n

11/26/19
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Quantum Cellular Automata

Glider

* Supports gliders

(eigenoperators up to

translation)

Period linear in system

size n

— X

— Z

SIENEIE:

Guetschow et al., JMP 51, 015203 (2010)
Stephen et al., 1806.08780

Fractal

* Operator support is fractal
* Period varies wildly
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QCA and subsystem symmetries

{ * There is a 1-1 correspondence between QCA evolution and subsystem J

symmetries of cluster phases.
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QCA and subsystem symmetries

[ subsystem symmetry of a cluster phase guarantees a common Clifford

QCA structure, regardless of states.

irsa: 19110119

2n generators of Pauli group = 2n real-space
symmetry generators.

Subsystem symmetries define a SPT phase, cluster

phase, universal for MBQC.

R o
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2D cluster SPTO phase by subsystem symmetry

Daniel, Alexander, Miyake, arXiv:1907.13279
All ground states (which are not necessarily stabilizer states) in 2D cluster phase on a 2D
Archimedean lattice with Cone/Fractal subsystem symmetry are universal for MBQC.

* Archimedean lattices are vertex translative (each vertex locally looks the same).
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Virtual space

Computational
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%Fractional

&
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symmetry |symmetry group QCA structure phase
Ribbon Z3" Periodic Yes Rectangul ar
Cone Z3" Glider Yes (4% (3%), (3,4,6,4)
Fractal Z3" Fractal Yes (6%)* (4,8%), (4,6,12),
(3‘*,6), (3,4,32,4), (33,42)
1 - Form YA No No (3,6,3,6), (3,122)

All
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*Previously known

Raussendorf et al.,

PRL 122, 090501 (2019)
Devakul, Williamson
PRA 98, 022332 (2018)
Stephen et al.,
1806.08780
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Lattices supporting glider QCA

i.e., conjecture of Stephen et al., 1806.08780 is false

e Consider the (3,4,6,4) lattice. We first construct tensor network

description.
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Lattices supporting glider QCA

* Gliders are operators whose support is translated by the QCA.

Site
(s2] -~ [=)] o E=N w N —

— N

1 2 3 4
Time
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Lattices supporting glider QCA

* Universal gates achieved via measurement in (X,Y)-plane.
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Lattices supporting fractal QCA

* Fractal QCA are characterized by operators supported on a fractal
subset of space-time points.
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Lattices with no QCA structure

* Lattices with 1-form symmetries (“gauge condition”) prevent unital QCA.
* 1-form symmetries are closed loops of operators

* Symmetry operators are deformable as multiplying two together gives a larger
loop.

* Pauli-X measurements at the edge implement YY parity measurements.

Measurement outcome tells | | |
us YY-parity of two qubits. |
vy Hiyy
T ﬂ:}:YY Hi}'}"
—_ 4 — HH X |— o | - || -
= H i _.l ": 4 A
(=1)1tiz+isyy : ,)- Myyy Miyy
— - - ng —

“-{}‘).' II{ VY

*This lattice can teleport a single qubit encoded in a repetition code.
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Miller and Miyake, Nature Quantum Information 2, 16036 (2016)

Discovery of new universal entanglement for MBQC using only single-
qubit Pauli measurements, in terms of 2D higher-form SPTO.

2D Union | 3-coycle,
Cluster Jack |3-colorable
SPTO 1D 2D 2D
Universal? / / /
Pauli | |
Universal? x / ‘/
R etri(d) > general 3-body diagonal gates with 3-cocyle

Renormalization fixed-point states on 3-colorable lattice are universal

entanglement for MBQC if and only if 2D SPTO is nontrivial.

Miller and Miyake, Phys. Rev. Lett. 120, 170503 (2018)
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Summary and Outlook

Summary: MBQC with symmetry without fine-tuning
All ground states (which are not necessarily stabilizer states) in 2D cluster phase on a 2D
Archimedean lattice with Cone/Fractal subsystem symmetry are universal for MBQC.

Real space Real space Virtual space |Computational Lattices
symmetry |symmetry group QCA structure phase

Ribbon zZ3" Periodic Yes Rectangular

Cone Z3i" Glider Yes (4Y), (3%), (3,4,6,4)
Fractal Z3" Fractal Yes (6%), (4,8%), (4,6,12),
(31,6), (3,4,3%,4), (3%,4%)

1 - Form 73 (nN) No No (3,6,3,6), (3,12%)

%Fractional Zk - - All

Outlook for fault-tolerant cluster-phase computation:

« Combination of cone and 1-form symmetries in 3D cluster state
-> state-independent protocol for infinitesimal rotations is not protected.

* universal set of CCZ and H available by higher-form SPTOs
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