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Abstract: & nbsp;In thiswork, our prime focus is to study the one to one correspondence between the conduction phenomenain electrical wires with
impurity and the scattering events responsible for particle production during stochastic inflation and reheating implemented under a closed quantum
mechanical system in early universe cosmology. In this connection, we aso present a derivation of quantum corrected version of the
Fokker&€* Planck equation without dissipation and its fourth-order corrected analytical solution for the probability distribution profile responsible
for studying the dynamical features of the particle creation events in the stochastic inflation and reheating stage of the universe. It is explicitly
shown from our computation that quantum corrected Fokker&€” Planck equation describes the particle creation phenomena better for Dirac delta type
of scatterer. In this connection, we additionally discuss ItA”, Stratonovich prescription and the explicit role of finite temperature effective potential
for solving the probability distribution profile. Furthermore, we extend our discussion of particle production phenomena to describe the quantum
description of randomness involved in the dynamics. We also present computation to derive the expression for the measure of the stochastic
nonlinearity (randomness or chaos) arising in the stochastic inflation and reheating epoch of the universe, often described by Lyapunov Exponent.
Apart from that, we quantify the quantum chaos arising in a closed system by a more strong measure, commonly known as Spectral Form Factor
using the principles of random matrix theory (RMT). Finally, we discuss the role of out of time order correlation function (OTOC) to describe
guantum chaos in early universe cosmology.& nbsp;
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e Quantum fields in an inflationary background or during
reheating gives rise to the burst of particle production,
which has been extensively studied in Primordial
Cosmology.

e Such phenomena has been compared to that of the
scattering problem in quantum mechanics with a specific
effective potential arising due to the impurity in the
conduction wire.

e |t is Important to note that such particle production events
are completely random (or chaotic) when the evolution is
non-adiabatic in nature.
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*A non-adiabatic change in the time dependent coupling of the
fields (wich is actually coming from path integrating out the heavy
degrees of freedom from the UV complete theory) as the
background evolution of the fields passes through special points
in field space produces these burst of particle creation.

*There lies a one-to-one correspondence between such
cosmological events to that of the stochastic random phenomena
occurring in mesoscopic systems where fluctuations in physical
quantities play a significant role of producing stochastic
randomness.

*The massless scalar field gets thermalise due to the effective time
dependent interaction. The cosmological events are identified with
those of the particle production stochastic random events.
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Questions:

How exactly conduction wire cosmology correspondence can be built?
How the out-of equilibrium phenomena quantify randomness?
How the physics of out-of equilibrium effects the cosmological correlations?

If we don’t know anything about the effective interactions (time dependent
couplings in QFT) then how one can able to quantify randomness?

. What is the statistical (probabilistic) interpretation of the stochastic
dynamics of cosmological particle creation in scattering problem?
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From conduction
wires to Cosmology
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X Distance T Conformal time
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|
N, No. of Seatterers N, No. of non-adiabatic events
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£ Localization length Ly Mean particle production rate
/ I I
plr) Resistance ng(7) Particle occupation number
E Energy ecigen value k? Wave number of Fourier modes
N, ‘ Number of channels N; Number of fields
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Scattering problem with impurity in conduction wire

* Consider single impurity is localised at x = x; .

e To the left (L) and the right (R) of the impurity potential, the
wave-function can be written as a linear combination of
right and the left-propagating waves:

wa(X) = Paexp (ikx) + a, exp (—ikx) where A = L, R,

 The map between the Bogoliubov coefficients (f, az) from the right
(R) and (p,, ;) from the left (L) side can be expressed :

!
) A4 -~ /)JA ; i T f._:;
Bp=M; B,  Bp= where A =L, R, .= :

. ) “'.} J

ﬁ | |
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[4 Scattering problem with impurity in conduction wire

* For y_number of scatterers one can generalise the transfer matrix
as:

N\
M= MWN) =1 t;=tty@ 1y & ...... Q My MHQ M,
j=!
 For N, =2 number of scatterers transmission probability can be
written as:
I,

T. = tf*tj, R =r*, Vj=1]2

- [ 2¢
(log TY, = log T, + log T> + 2({log |1 — \/R,R,e”|), = log HTJ = Z log 7}
j=1 j=1

N =0

N, ¢
(logT)y = log H Ti| = Z log T; = — N,y «— Lyapunov Exponent

J=1 J=1
Impurity and the associated
phase is random and uniformly
distributed over the range

0<6O<2n
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Dynamical study with
time dependent protocols
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y(=k,7) = y*(k,7) | _
. De Sitter
- dz]\ - 7 alT) Hr
,’}:(X, T) = Xk(’() E"k'x (1 + ¢€), Quasi De Sitter
' ) (2_7';')2 ' Hrt
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Use field redefinition: I

- — Slow-roll parameter
H? di a(t)H? dr

P (1) = a(7) y (1)

}

" dk
art

] 2m)3

}

d? | da(r) d - . | da(r) : _ ) )
+ —+ | K+ m(r) - () =0  Klien Gordon equation

2

B dgp (1) | da(r)

— (k%2 4+ m*(1) | ¢ (7) |"1

P (1)

|
? dr a(t) dr

de? a(r) dr dr a(r) drt

l Reheating approximation ﬁ

kla>>m>>H

Our job is to solve this EOM
for different time dependent protocols

1? - 5
[r F (k-4 m‘(r})] D7) =0 —
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What is Quantum Quench?

Quantum quench is a protocol in which one prepare a quantum system in an
eigenstate of one Hamiltonian and then have the system evolve dynamically
in time under a different Hamiltonian. After that the system thermalise. This
change sometimes identified as quench.

Consider a quantum system in its ground state. Turn on a

time-dependent coupling g(t) for some time up to t = ty.

L
e.g. H(t) = —J§ (07X 1 + g(t)o7]
j=1

g(t)
9o

The post-quench dynamics is described by a final Hamiltonia
H and an ‘initial state’ |«'y), which depends on g(t).
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What is Quantum Quench?

n
m,?

2 m
m 2 -
out

L t

(a) Mass quench (b) Quench in sudden limit

'[Calabrese Cardy (CC) State>
Quantum
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>

Pre Quenched
Quantum
State

IlGeneralised Calabrese Cardy (GCC) Slale>

4 Ground (Squeezed) St;:to)

hermal state
i

Post Quenched Quantum State (Thermalization) >
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LSome technical details
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Quantum correlation due to quench
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Quantum correlation due to quench
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Quantum correlation due to quench{ r
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Quenched protocols:
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Example:

mi(r) = m():(l — tanh(p1))/2

Coformal time dependence of mass profile |
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rl,u(A] = a*(k)a (k) _”lA}”m"A] l /)l:lAth:a' k)

e Pin® iw iw, i, .
. ; . ) 201
u;, (k, 7) 2 F — = P — e

2071
\ 2w, P P 2

=i, T ; 1 ]

e out L L Ll -
— E[“I ( ’ ' : 2 -1 C_l}’”)
A/ 2w P P P ’

”nm ( ,\ ‘ T) =

Ul

|
2 )
w;, =/k*+my, w,, =|k], w,= —(w,, T w,).
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OETiCG' EPOEGI"TieS: : , Reflection coetficient
Tk) = 1/]atk)|*, RK) = | B 2/ |alh) |, .

—_— mged

la() | = |pR)|P=1=>R+T=1

 Lyapunovexponent

Chaotic property:

Ak) = =logT(k) =2log|a(k)]|

Conductance Resistance

Conduction properties: 1T B — meat

— mg=2

r(k) = 1/G(k) = exp(24(k))
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What is OTOC ?

Out-of-time-ordered correlator (OTOC) is something like
(ABHADB()) 1+ 1)

Larkin, Ovchinnikov (1968)
More precisely, we define

A

Time-ordered correlator: (O, (1)0x(t) - -- Oi(t;) - - - O, 1 (1, O, (1))

where IISIES"'(—I rr’E"'E’n—l EIH

—
(- )=Trp---) O; : Hermite < .)

Qut-of-time-ordered correlator is defined as those that cannot be
written in the above form.
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3 |
What is OTOC ?

Out-of-time-ordered correlator (OTOC) is something like
(ABHADB()) (1 +1)

Larkin, Ovchinnikov (1968)

At zero : . »
temperature " )

V)
Al

0,

Schwinger Keldysh formalism

ty

At finite by +ic# : L>
temperature 5 ¢

P,

to+ie — Ao)e
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Why out-of-time-order correlators?

* A test for black hole horizons? Az, = = and MSS bound

* Probe of quantum chaos, access finite N effects

* Probe of thermalization, localization vs thermalization

* Bounds on transport? Other bounds on quantum dynamics?
* Precision measurement? [Davis-Bentsen-Schleier-Smith PRL “16]

e Probe of new physics in Cosmology (reheating)
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Why out-of-time-order correlators?

* A test for black hole horizons? A\j = ‘f—f and MSS bound

* Probe of quantum chaos, access finite N effects

* Probe of thermalization, localization vs thermalization

* Bounds on transport? Other bounds on quantum dynamics?

* Precision measurement? [Davis-Bentsen-Schleier-Smith PRL “16]
e Probe of new physics in Cosmology (reheating)
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Z OTOC in QFT

* Non-equilibrium physics is described by OTOC: (W(r))s =0=(V(0))s

> I ' 2 -
€ (1) = — (|W(), V(0)]|) = - —Ir {L-xp(/)’u)|wm_, V(0)| } (Hermitian)

C(r) (W (r), V()] [W(r), V(0)]) S I qexp(=pH) [W(r). (0)]T (W (7). r.(l)|}.(Not-Herm|tlan)

—_—

X(t) = et X(0) e *H!
(Heisenberg picture)
/

Z ="Ir {C,\pl—ﬂH I} (Partition function)

Hamiltonian of the QFT model
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3 OTOC in QFT

* Non-equilibrium physics is described by OTOC: (W(r))g =0=(V(0))s

e s , : : 2 l
C(r)=—"Ir {[) “-l_- (1), \__-'(()_H } , (Hermitian) p = = o—BH
' (Not-Hermitian) Thermal Density Matrix
7 =Tr{exp|=fH]| (Partition function) X(t) = e X(0) e
| (Heisenberg picture)
Hamiltonian of the QFT model b= T with kp = 1

* OTOC actually captures the effect of perturbation by the operator V(0) on the
later time measurement on the operator W(r)

* Two point function (commutator) decay in the large time limit, Three
point function (and any odd point) are zero due to the he Kubo Martin
Schwinger (KMS) condition (time translational symmetry), which can

be shown using Schwinger Keldysh formalism of the closed time path
of the real time finite temperature field theory .

* Four point function (square of commutator) good measure for OTOC.
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G OTOC in QFT

 Any 2n (n=2,3,4...) higher point functions are allowed to quantify
OTOC:

) ::\I'.r".}} (0)Y (0)X (1)) 3 (Y ()X ()X ()Y (0)) 5 2 Rel{Y(O)OX(OHX (DY (0)) 4

(Dissipation time scale)

(XY (0)Y(0)X () ~ X()X()s(Y(0)Y(0))s +O («'f”ff)q
YO XOXOY0)s~  (X(OX(1)s(Y(0)Y(0)s+O (r_’ ’f"-ff) :

C(t) =2 {{(X(O)X(1)s(Y(0)Y(0))s — Re[(Y(0)X ()X (t)Y(0))s]} + O ( ”)

|

i C'(t) (X (1), Y (0)]*)5 [ e (Y (0)X ()X ()Y m"::,.-'l
C(t) : e — o I R e . -
(XX Y (OY(0)g (X(OX1)s(Y ()Y (0))s I (X(OX(0))s(Y ()Y (0)s |

? —

Normalized four point OTOC
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3 OTOC in QFT

For Chaotic OTOC:

I ’ I " LRe[(Y(IOWX(O)X(HY(0)) 5
C(t) ~2<1 (€ ALt O |’ )1 — Ay~ —In( N~ : [< _ ( _ _) _ ) _ “_} _( )>' J)
| N? Nt ) { (XX ()Y (0)Y(0)s

, |
N~ —= V87Mp  (Number of dof)
VG N
27 , | _
AL < = 27l where 3= — with h=1=¢, kp =
0] ]

Ref.: Maldacena, Shenker and Stanford, arXiv: 1503.01409, JHEP 08 (2016) 106

Re [(Y(0)X (£)X ()Y (0)

{ )J I l’.r}r!
(X)X () s(Y(0)Y(0))s ~

~— | ~——
oy
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3 OTOC in QFT

QUASICLASSICAL METHOD IN THE THEORY OF SUPERCONDUCTIVITY
A. I. LARKIN and Yu. N. OVCHINNIKOV

Institute of Theoretical Physics, USSR Academy of Sciences
Submitted June 6, 1968
Zh. Ekep. Teor. Fiz. 55, 2262-2272 (December, 1968)

It is shown that replacement of quantum-mechanical averages by the average values of the corre-
sponding classical quantities over all trajectories with a prescribed energy is not valid in the gen-
eral case. The dependence of the penetration depth on the field is found without making any assump-
tions about the weakness of the interaction between the electrons and the field of the impurities; the
case of very dirty films is also considered.

Ap: (£) p:(0) ) = &2 < ( ‘;‘: ( g).) ) > (26)
A= (?:7%)2) Xt ~-%§ [71021‘ (—Z}) (30:— 1)+ —t%f (%)] (30)

f(t)— et + 2e~t2sin (‘?t _ '%)

At large times the wave packet is completely washed
out. In order to evaluate the average of the square of
the commutator in this region, it is necessary to use

not the quasiclassical formulas (26) and (30) but the
difference between expressions (25) and (24).
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3 OTOC in QFT

Semiclassical limit: Early times

\'(/) ”l /” }((]) (,J-']J(U)If’h? (7([) 9 |:I (I(|q(.’)_p{[])|>j’ub:| T

Butterfly effect

dq(t
(1), pO)]) ~ i {q(t), p(0)} pry = ()(j((()) ;Ao

:Ehrenfest time scale:
time scale for significant decay of

e (lq(t),p(0)])/ab

1 1
be = v In (ab) = " In (V)

4
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3 OTOC in QFT

Classical chaos: Instability of trajectories

1 [6(8)]
Quantified by the Lyapunov exponent A = max lim —In
g P 5(0) tooo t  |85(0)]

Stable (regular, quasiperiodic) trajectories Unstable (chaotic) trajectories
‘h'__—‘k_.___"_‘_'
g >
/’/’ R 0y
8(0) /D -
6(0) |6()] oc t@ 18(t)] o et
At most polynomial divergence Exponential divergence

(of a bunch of neigbouring trajectories)
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G OTOC in QFT

Sachdev-Ye-Kitaev model

Random all-to-all interacting Majorana fermions:

N b
I ,%' . & ~ 01_ o-
H= _4_" Z Ji‘ﬂ\”ﬁiij}‘ i Kitaev (2015) 3 ,/;;‘.’.“7,1.1:1 - '»",‘\.‘1‘ Jasen f}o".‘:
k=l i e
: (it N\ < Y RTRT %
317° : : ' \ W eld
Jiwi = N T =0 Wi} =0 . %) )

The model is maximally chaotic, i.e.,

o N 2nt )
(Wi (O (0)) ~ fo — N EXP (—B_) + O(N )

Holographic dual to black holes.

trlp? W(D)e(0)p? W(r)e(0)]
tr[p2 Wp2 W]

~ Cn — C1 eX %{{{ . Shenlker, Stanford
0 C1exp 8 (2014,2015), ...
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[ OTOC in QFT
For Harmonic oscillator:

Semiclassical and classical both results are same.

, 2 .
x(t) = x(0) coswt + afp(()) sin wt,

W
p(t) = p(0) coswt — 5;‘(:(0) sin wt

)

C(t) = —([z(t), p(0)]") = —(icoswt)® = cos® w

In Cosmology: Quantum correlations during reheating

C(t) = —{([o(t), e (0)]7), —{[p(1), H(0)]7), —([Ty(2), 15 (0)]%)
or

C(t) = —([C(k, 1), TT(k, 0)]*), —([¢ (k. 1), ¢ (k. 0)]*), —([TI(k, ), TI(k, 0)]")
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OTOC in the Sky

Sayantan Choudhury! ?

Quanium Gravity and Unified Theory and Theoretical Cosmolagy Group,
Mazx Planck Institute for Gravitational Physics (Albert Finstein Institute ),
Am Miihlenberg 1, 14476 Potsdam-Golm, Germany.

Email: sayantan choudhury@aei mpg.de

Abstract

The out-of-time-ordered correlation (OTOC) function is treated as a measure of quantum
chaos in the context of condensed matter field theory when the system is out-of-equilibrium.
We demonstrate a method using which one ean explicitly compute the expression for the
OTOC for out-of-equilibrium quantum field theory (OOEQFT) with a general Hamilto-
nian in presence of enrved gravitational background geometry. We demonstrate explicit
calculations of OTOCs for o massless, partially massless and massive scalar field in the

planar coordinate patch of De Sitter space. For these cases, we show that OTOCs are

periodic in time coordinate because of their commensurable energy spectra. Further, we
also demonstrate the classical limit of the OTOC to comment on getting the classical chaos
from the present three different cases in the inflationary patch of De Sitter space. Next, we
compute the expression for Lyapunov exponent and verify that whether our derived result
is consistent with the saturation bound obtained for quantum chaos in finite temperature
quantum field theory setup, Ay < 27/3, where 3 is the inverse of the De Sitter tempera-
ture, Further, we have studied contour dependence in the regularised OTOC which lead to
contour independence of physieal Lyapunov spectra of De Sitter space. Next, we provide
a kinetie theory interpretation of the regularized OTOC, Also, we discuss the relation be-
tween experimentally measured quantity, the Loschmidt echo and the regularised OTOC
in De Sitter space. We have also studied the classical imit of the OTOC derived in the
De Sitter space. Finally, using the obtained results from OTOC we propose new time de-
pendent cosmological correlation funetion, which can be treated as new theoretical probe
in the context of primordial cosmology (specifieally for reheating)

Keywords: Out of equilibrium QFT, QFT of De Sitter space, Theoretical Cosmology.

L Corre spondimg author, Alternative Fomail: sayanphysicsisiidgmail. corn

INOTE: This project is the part of the non-profit virtual infernational research consortivm *Quantum
Structures u”f the h';urn-r Time 8 Matter”

upcoming
work
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OTOC from RMT:
Alternative approach to
Cosmology

Pirsa: 19110117



Pirsa: 19110117

G RMT basics
Here one can consider GUE, GSE, GOE, CUE etc statistical ensembles.

If the Hamiltonian is time-reversal symmetric the required distribution
will be invariant under orthogonal transformation. Else, it is invariant
under unitary transformation.

In the thermodynamic limit (N — o) eigen value of density of random
matrices showed a universal behaviour characterised by Wigner’s
Semicircle law.

The results seemed to be applicable to a varied class of quantum
system displaying chaotic behaviour. Chaos was also a hallmark of a
few-body Hamiltonian (N finite), but better diagnostic for quantum
systems was devised in which nearest neighbour spacing distribution
(NNSD) of eigenvalues of the system will be chaotic if distribution is
Wigner Dyson type:

Pw)=Aw’e ™, v =1 (GOE), 2 (GUE), 4 (GSE)
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G RMT _b_asics

. Wigner Dyson Statistical Ensembles

Element of matrix Type of ensemble Relation
(GOE)
Flements are real Gaussian Orthogonal Ensemble time reversal symmetric Hamiltonian
+symmetric
) (GUE)
Elements are complex Gaussian Unitary Ensemble broken time reversal symmetric Hamiltonian
+ Hermitian
(GSE)
Elements are quaternion Gaussian Sympletic Ensemble -

+ Hermitian

Properties of Gaussian matrix ensemble in Random Matrix Theory (RMT).

The joint probability distribution of such random matrix, which is
characterized by the Gaussian potential is given by the following
expression:

N N N
1 " 1 . .
P(M)dM = exp (—Qter‘) dM = exp =3 Z zo | exp [ — Zii H dz;j.
i=1 i£j iZj=1

N= rank of the random matrix M

M- U 'MU = P(U 'MU) = P(M)

U=0Orthogonal/Unitary similar matrix
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G RMT basics

B Ensemble type | Gaussian ensemble Eﬁ, Circular ensemble Uj:,
1 orthogonal GOE SN COE On
2 unitary GUE Hy CUE Un
4 symplectic GSE QN CSE Span

*the Circular Orthogonal Ensemble COE of real orthogonal matrices,
ethe Circular Unitary Ensemble CUE of complex unitary matrices,
*the Circular Symplectic Ensemble CSE of complex symplectic matrices.
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G RMT basics

Partition function: /(W o~ Tr[V (M)

V(M)=Random Potential

M =U"'AU, A=diag\)¥i=1,---,N

N
dM = T[N = N7 ] dde dUbaar

1 <i<j<N k=1

Integral measure:

A. Wigner Dyson ensembles: (3 ensambles)

dM = H

Ai — A" ][ d\ v =1(GOE),2 (GUE), 4 (GSE)

i< k

B. Altland-Zirnbauer ensembles: (Q{’ ’Y) ensen:lb]e

dM = H A7 ,\f]“ H | Age| “d A (7 ensambles)
i< k

Total ensembles in RMT= 3 (Wigner Dyson)+7(Altland Zirnbauer)=10
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G RMT basics

N .
F l_).AL;:/ PR T -~ . 1 <‘. * . 1 _-11 F. [ 1"1‘
7 — | | /d/\i e~ N=5(A \f\,)q y =1 (GOE).2 (GUE). 4 (GSE)

1=1"

N N
S AN) = = D V) +y ) A =
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G RMT basics

The solution obtained in the large N limit 1s analogues to the solution
obtained from the WKB approximation in Schrodinger equation.

General Distribution function for random eigenvalues

p(A) /\)\/ (A o Z ap AR H —agi—1)(A —ay;) V general n,
k=1
Z Ay AN EFD) V general n,
TL
X\ = H()\ — a9i—1)(A — ay;) V general n.
:NOTE:

All the coefficients are determined using the method
of resolvent which captures the spectral properties of an operator
(spectral decomposition) in the analytic structure of
the holomorphic functional in complex plane.
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RMT basics
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RMT basics
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RMT basics
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3 OTOC in RMT

. . Connected 2 point function
GUE 2 point function: {O0,0.))¢ = (0,0,) — (O)(O,).

(01(0)0:(t))cuE = /dH (01(0)O4(t))

Oy(t) = e "H1O,(0)e! Heisenberg Picture

Spectral Form Factor
H - UHU' = d(UHU") = dH

(01(0)02(1)) qur / /'”f dU (O (0)U et UTOL(0)U HHUTY = (01)(Os) + l/')tfll l\":“tozi‘}c'
Dimensionality of
SFF(7) -1 OO the Hilbert space
7 ; 1 = U2
(O1(0)0s(7))cuE = 1 1 ’
0, 01 # O

Special case:

(O01(0)O2(t))cuk

when O,(t) = O, SFF(t) >> |
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3 OTOC in RMT

GUE 4 point function:

(O](0)@3(?’)0;;(0)04(T))(;U].j :// dH dU <OI(](!XI)[f'iHTJ(fT02(f

exp[iHT|UTO3U exp|—iHT|UTOLU exp[iHT|UT),
576 terms in the expansion

(O1(0)O4() O3(0)O4 (7)) cuE = (010,030, x fFFT), Dimensionality of the
Hilbert space
Four point Spectral Form Factor
SFF,(7) = (4(1)Z4(7)Z"(7)Z"(7))cue
= [D)\ Z expli(Ni + A + M + An)7]

1,7,k,1
7 JiQ2r) 7 o
=I'=5"+3(-2
VAREES
~ et o (1=2),
For any general 2p point GUE OTOC: w2
SFF,, (1
(O01(0)21(7) -+ - Op(0) (7)) cue = (O1Q1 - Op Q) X 1—22;()
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3 OTOC in RMT

Averaged 2 point correlation function:
/d@ (0(0)0 (1)) : = %/d(f) Tr (O exp|—iHT|O! exp[iH 7))
1 I?
== Z Tr (Ok exp[-HT|O] cxp[iHTl) .
k=1

A |
First moment of the Haar ensemble: jd@ ODO' = ET‘r(D) I,
(Constraint Condition)

Quantum averaged OTOC = /d(’) (0(0)O1 (1))
1 .
= L [Tr(expl-itir])

1
e ﬁSFF(T) x Two point SFF.
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G SFF in RMT

e Consider TDS at finite temperature:

o | 5] 770 M. { —AH N _AE
.\'] al a WV y 1" /] |-.A: ] /(‘ = I : ( — ( ! T
W (3,6))TDS = \//()) E exp [ (u‘ { 2) l_.“] |n); @ |n)o (3) r( ) 2

n n

where 1 and 2 stands for two identical copies of the eigenstate of the
Hamiltonian H, which are CPT conjugate of each other.

e Survival amplitude or overlap:

| — s AT
M(B,t) = (U(3,0|W(3,1)) 7(-;)2,"_“"“”’”

4\
n

§ eiBn-E B=1/T—>0
o N —
h'Z“J = LI AT

0, B=1/T > 00

e Survival probability or Fidelity:

. p 9 ] — A A Y T L —23 K.
P(B,t) = IM(B, )]* = |7(__g_)|2 z e AEm+ED) p—it(Em—En) 4 ZC 28E,,
iy m,n,mgn n

) 2 point SFF

= ——— (|Z(B +it)|* + |2(20)]%) o a8
2o Sy(t) = — ..I: e Z e BEn+ED) o —it(Em—En) _ |Z(ﬁ+ !f))|“

= Sa(1) + N(A), = Z(B) 1Z(B)I?

m,n,myEn

N(B)

Z@B)E 1 /'r o
= zppE a4 P(8,t) = P(B).
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G SFF in RMT

e Here OTOC in RMT can be written in energy eigen basis can be written
as:

C(1) =

. ) Z ('In.m(r)exp’_/))(En + bm)l
Il(/}) Ih n.m

(

(r) = — (n|[e™"",x]*|m) = exp |—i(E, — E,))7]

n.m

Quantum OTOC = 2 pt SFF
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Thermal Green's function and two point SFF in RMT

e Thermal Green’s function:  G(f3,7) = G,.(f,7) + G.(f3, 7)

e Disconnected Green’s function:

G.(B.1) (Z(B + in)(Z(P — it)) |dA du e A0 =741 (DA D(p))
AP T) = p - : -
: (Zp)? GUE | dA dp e P+ (D(A))(D(u))

e Connected Green’s function:

[dA dp e "1 A (DD (),
C [da du e (D)) (D(p))

(1ZB+i0Paue | [ (2B + D)2 - in)
(Z(PNeur (Z(p)?

G.(f.7)= G, 1) — Gylf.7) = l

 Here GUE= Gaussian Unitary Ensemble average
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Thermal Green's function and two point SFF in RMT

e Thermal Green’s function:  G(f,7) = G,;.(f,7) + G.(f, 1)

e Disconnected Green’s function:

G (o) = | EBH NP~ iv) Jdi du e " e (D)) (D())
APT) = p S :
: (Zp))? GUE | dA dp e=P+i) (D(A))(D(u))

e Connected Green’s function:

[dA dp e "1 A (DD (),
C [da du e M (DQA))(D(p))

(1ZB+i0Paue | [ (2B + D)2 - in)
(Z(P)eue (Z(p?

G(pv)=G(p1)-Gpv)= l

 Here GUE= Gaussian Unitary Ensemble average

* For general even order polynomial random potential density function of
the eigenvalues of the random matrices can be expressed as:

ﬁ /‘)(/U = |

n
p g, A2 A )
da” — A- Z a, AN V even n
k=1
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Thermal Green's function and two point SFF in RMT

* One point function on the semi-circle as given by:

2a

Z(Pxit)) qug = I(M e¥i™ o= (PN, cuE = di e¥™ e P4 p(})

J-la

After simplification we get:

ﬁ where (Fy (A; B, C: D) is the regularized Hypergeometric function.
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Thermal Green's function and two point SFF in RMT

* Two point connected density function:

_ _ sin[N(A — p)| [
(D(A)D(p)), = — —— — +—06(A — )
(ZN(A = p))- N

Connected Green’s function on semi-circle:

- | [ Lo s sin?[N(A — )] |
G(1) =—|dA du e™"" 71 | - — + (A — )
N-= (ZN(A — p))* N

Use A+u=E A-pu=w, dldu=dE dw ﬁ

Consequently, we get:

] o0 ‘
() :—[ dE e Pt .

2

L 2 [® , | sin’|Nw| |
G.(fp.1) =—=d0(p) da e '™ - — olw)
N; -0 = (N“”'I }IN

We choose our working region at E=0 (at high temperature limit)

> * : | sin?[V [ : - J
S(7) = NG (7) = J dw e "™ [_% Ul + N(ﬁ(m)] { 27N} N T (aN) o
_ b4 _

72 (Nw)? |

N’

@0
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p(A) for different g

:q:—lfﬂﬂ

Example: Quartic Random Potential oy

|
VM) = —M? + gM*

I /1 ) N
pA) =— (? +4ga“ + Q.g,l-)

T

g=0 Wigner semi-circle distribution law

4 I
(5% 4 r;,l'!:t;’lrf"q + 1) 81,(2a3) — 24agl,(2a3)|”

X -_(flu"_f; 1) (B + i) (2a(3 + i7)) — 24agly(2a(3 + iT))]

X ;(‘.Elu"r; 1) (B — ) [ (2a(3 — 17)) — 24agl>(2a(3 JTH]
T 1 1
(2zN)2 N ' (aN)’ )
SFF(3,7) =
34 l
(3% + 712)° (24a*g + 1) B1,(2a3) - 24agly(2a73) _'

¢ [(24a%g + 1) (B + 7)1 (2a(B + i7)) — 24aql>(2a(3 + i7))]

X t('_}lu"g 1) (B = i7) [ (2a(3 = i7)) — 24agl,(2a(5 i7))|

4
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Example: Quartic Random Potential

SFFat finite temperature for quartic potential

.............. - Spectral Fur_m F:c_tnl for Quartic Po_tantla!

0.008
0.015
0.008 ’ = 2=0.1,N=100 0.00015 am0.1,N=10000
0.004 0.010
— a=0.1,6=10,g=10,N=1000 0.00010
0.003
0.005 0.00005
0.002
0.001 0.0001, . ‘ . . ‘ ‘ ogoooo [ -
0 100 200 300 400 500 G600 700 0 20000 40000 60000 20000
0.000 | L o L L ) r(time) r(time)
0 2000 4000 6000 8000 10000
r(time) . Spectral Form Factor for Quartic Potential
SFFat finite temperature for quartic potential 10015 =— a=0.1,N=1000
140000 [T
120000 _
— a=0.1,8=100,g=10,N=1000 e

100000
80000
Buouo )‘nnuuI||||I|||\\||||I||||I|\ T R R -
40000 0 1000 2000 3000 4000 5000 GOOO 7000
20000

o 1 L n n I 1 n 1 n n i n 1

0 5000 10000 18000 20000
7(time)
ST . . ) N N Y la n
Bound on SFF from theory: —— | ] —— | <SFF <— V7, 0<fp(=1/T) < o0
N /4 /8
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Fokker Planck Equation:
Probabilistic approach in
Cosmology
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Constructing Fokker Planck Equation in Cosmology

* The probability density for particle position of Brownian motion in a
random system can be expressed in terms of Smoluchowski
equation:

00
P(M: 7 + 67) = j P(M,,7) P(My,57) dMy = (P(M,. 7))y,

e For Markovian process, Smoluchowski equation describes a two
point conditional probability distribution satisfying the following
criteria:

Py(Y, 1| Vs, 13) = dY, Po(Y\, 1) Yoo tn) Py(Yy 1y Yo 15| Yo ty)  fOr t, < t, <ty

* oo

e The time evolution of the probability density function can be
expressed as:

(OM ). (OMOoM )y,
— 0y P(M, 7) + =———————0y, 01, P(M, 7) + . ..
ort ot

0.P(M, 1) =
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Constructing Fokker Planck Equation in Cosmology

* Applying Maximum entropy ansatz Smoluchowski equation can be re-
expressed as:

P(n;t+67) = Id(} P(n,0.7+ 61) = I dO (P(n+ 6n,0 + 60;7))5, = (P(n + 6n;7)),

* Now, using Taylor expansion we get:

OP(n; ) d{dn)g, | 0*P(n;7) ((cﬁn)z)[,,-t } )
4+ — 5T 4 -

(P(n+6n:1))s5, = (P(n;7))5, + {

on ot 2! on? ST
| ) _ oP(n;7) _ | *P(n;7) _ ,
P(n;t + 6t) = P(n, 1) + ———61 + ———F—(07)" + -+~
ot ARG &

* Further equating coefficient of §¢ we get:
dP(n.7) _ JP(n:7) (6n);, * | 0*P(n:7) {(6n)), | ﬁ

- ot on ot 2 on- ot

(on)s, = (1 +2n)(n,) = udr(l + 2n)
((6n)?) 5. = 2n(n + 1)(ny) + (1 + 6n + 6n%)(n,)> = 2n(n + Dudt + (1 + 6n + 6n°)(ud7)*

. i . | dP(n:71)  _0P(n:71) _ 0“P(n; 1)
I'okker Planck kquation : _ = (1 +2n) +n(l +n) .
I U, dr on on-
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1st order Fokker Planck Equation

‘ ‘ . | oP(n;t) . _0P(n;7) _ 0°P(n; 1)
Fokker Planck Equation : — = (1 +2n) +n(l +n) ;
| Wy 0t on on-

1 I
Pn, 1) = exp | =n| w(n+ 1)+ - + |
2\/;,tkzz(i-z + Dn hyt(n+ 1)
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2nd order Fokker Planck Equation

n” , *P(n; 1) d°P(n; 1) i
— (1 +n)* ———+2n (1 +3n+2n*) ———+ (1 + 6n + 6n?) - -
2 on on? ‘ on? g Ot

2-P(n; 1) B | d°P(n; 1)

P(n;r) = {:rr(_'nE ﬁfng_}) : [nsin(Ln) cos( L) — juem cos(Ln) sin( Ly

)] — (dmpn) i {Ci(—L(n + 7))
— Ci(L(n 4 7))} = Ci(=L(n — 7)) + Ci(L(n — ppe7)) — 2i

{Si(L(n + 7)) = Si(L(n — px7))
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4rth order Fokker Planck Equation

o 1r)”sl’(w:r) X _ d'P(n.1) o . , °P(n:1)
10n7(1 4+ n)'=———— o 14017 (1 + 2n)=————— - 30n~(] + n)"(3 + 14n + 14n*)————-—
ons on’ n®

) ) . _, PPni1) ) s . . M*P(n; 1) I P*P(n;1)
F20R(1 + )1 +20)] +7n+ Tn-)———— 4 (1 + 201 +90n- + 140n" + 70n™) = —
an? dn? o ot

Pl (2 l /-q gk eikn (k=n~pj, { ;%%-n:;'r;.. F6) ook (k=n=pg . 2‘{‘-:.:;;# F6) ik
B Ahetnd Aknt

— =~ sin(ugkT) 4 _ cos(ppk)
Qﬂ""u",uf, sin{pik7) k2n? 2 cos(py k)

(k*n’pu; — 6) I }
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4rth order corrected distribution function

Probability Distributionupto 4™ order correction

— T=0.15/p1,

o)
P(n;1)

T=0.015/ 1,

P(n;7)

Small NG in <n_k(t)n_k(t’)n_k(t”’)> but larger than primordial one
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Statistical Moments

) ) 1 J(F) oF *F
1st Order Master Equation : —_—— = (1 + ;n)-—- +nn+1)—
MW Ot on on?
o | 0XF) <n1 L 0F P .,:F>
2nd Order Master Equation : —e———— = = (1 +n)"=—<+2n(1+3n+2n ]— + (14 6n+6n*) —
up  drs 2 ont an? dn*
33 3 gt In? )5
3rd Order Master Equation : L}r <F) = L(I +n)? kil +i(l +n)(1 + 2n)
up ot 6 onb on’
I OF
+3n(1 +n)(1 + 5n + 5n? )-----+(l +2n)(1 + 10n + 10n° )-----
on# on3
oMF °F )7F
4rth Order Master Equation: — (F) = { 70n*(1 +n)4-——-—— + 140n°(1 + 2
ut ot on® on’

‘F >PF a*F
+300%(1 + n)*(3 + 14n + 1402 ) =+ 20n(1 + n)(1 + 2n)(1 + Tn + Tn? )— + (1 4 20n + 90n* + 140n° + 7()}14)?
on

where (F(n))(z) = | dn F(n)P(n; 1)

Pirsa: 19110117 Page 76/90



Statistical Moments

I d(n)
i1st |[— — = ((1 +2n)) =1+ 2(n)
J P4
I f)(” 1> ; ) - : . ~ )
1st |— —= 2n(l +2n)+ 2n(1 + n)) = (4n+ 6n°) = 4(n) + 6{(n")
W 0t
| 0*(n®) y. | N
2nd | — = (1 +6n+6n°)) =12(n) + 12(n*) + 2
Hi ot
l ()(”}> 3n(1 2n) + 6n(l 1) 6 on? + 6n’ : O(n2 6(n3
1st ﬂ_ r = (3n“(1 +2n) +6n(l +n)) = (bn +9n~+ 6n") = 6(n) + Yn*) + 6(n")
k
| 0*(n’) _ : " i .! _ ;
ond|— )’ — = (12n(1 + 3n+ 3n°) + 6n(1 + 6n + 6n°)) = 18(n) + 72(n*) + 60(n")
pi Or?
I 03(n?) e .., . . _ 3
3rd ;;- prca (6(1 +2n)(1 + 10n + 10n°)) = 72(n) + 180(n~) + 120(n”) + 6
A
| o(n*) . . N2 3, (), 4 3 YOV 1
1st ‘LT — = (4n”(1 +2n) + 12n°(1 + n)) = (160" +20n") = 16{(n") + 20{(n™)
ko Ut
I f).-’(‘”_l} ) gl . ) . . 2 ) 4
2nd T (12n°(1 + n)" +48n°(1 +3n+2n°)+ 12n°(1 + 6n + 6n°)) = 72(n") + 240(n") + 180(n")
,H[ or=
| ()3<n4) . 5 "y " 5 " N _ 3 . 4
3rd F Py ={(T2n(1 + n)(1 + 5n + 5n°) + 24n(1 + 2n)(1 + 10n + 10n°)) = 96{(n) + 720(n") + 1440(n"") + 840{n")
i
I oXnt) N ) | ) : ] 1
4rth — o (24(1 + 20n 4+ 90n~ + 140n° + 70n")) = 480(n) + 2160(n=) + 3360(n") + 1680{(n") + 24
u ot
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Statistical Moments

Total correction at p, =1

— Variance corrected

= Varlance
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10°%
10-0
10 10" 102 0.1 1
T
(a)Time evolution of variance.
Skewness Total correction at p, =1
0.6
0.8
04
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o
0.0 —=
L\ 2 a G n 10
T
(L) Time evolution of skewness
Kurtosis Total correction at j/, =1
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Kurtosis
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10=10 R
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& Ito & Stratonovitch

Ito Stratonovitch

oP(n; ) ’ , IOP(n: J / B
= == (n(n + 1)P(n; '1-')) el _ (\/n(n + I)—JJ— (\/n(n + I)P(u;-r)))
on 4

ot on? e on

1 ((4n + D, + n)?
Pn, 1) = exp [— L ] Pin, 1) =

2/my/n(n + Dpy dn(n + Dy

92n + 1)’y ]

|
exp | ———
2/my/n(n + Dpy \ 16n(n+ 1)

_ProbabilityDistributionfor fixedpr R . L ProbabilityDistributionfor fixed yr
1 1
0,0004 — T 0.045) — =
iy i
ralZ T!LZ
iy My
0.0003
—_r=i — rmld
= iy o= 0o "
c —_— et _'F: —_—
& 0.0002 i o
—_—
e 0.006
0.0001
0.0000 g 0.000
G — — — . - ) . m “ m P
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4 Generalised Fokker Planck Equation f#0

0

on ('701 + 1) oW(n; 7)

on

oWn; 1)

ot

on

) - Un)Wn; 1) =

e V(n) ) B PV \ B [ dntn+1)) ) dV(n)) - 2
Un)= | —nn+1) —— +1) —— P
(n- [ 4 ”(” - ( (}n _ 2 ”(” ’ r)nﬁ 2 ( (}ﬂ ; ( f)ﬂ ) V( ’l) n

B - w(2nt + 1) pn?
P(n;t) = exp (—'i"v"(n)) Win.1) = i Sl L = pn{n(Pnin+1)-3) - 2}]

|
exp >
/ Eﬁ\/n(n + Dy, dn(n + Dy, -
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4 Generalised Fokker Planck Equation /3 £ ()
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Conclusion
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G
* We have provided the analogy between particle creation in
primordial cosmology and scattering problem inside a conduction
wire in presence of impurities.

* We have studied the same problem where the particle
Interactions are not known at the level of action. For this purpose
we use Random Matrix Theory.

* \We have solved the dynamics of the particle creation problem by
studying the higher order corrections in the Fokker Planck
equation for previously mentioned random system.

* \We have also provided the expression for the two point quantum
correlation function, which is known as Spectral Form Factor (SFF
for both in finite and zero temperature. SFF is actually a more
strong measure to find chaotic behaviour of a dynamical system
compared to Lyapunov exponent. We get saturating behaviour of
SFF at late time scale, which indicates that it has an upper-bound.
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* We have provided a model independent upper and lower bound of
SFF, —1/N(1 - 1/z) < SFF < 1/aN

* We have also established the equivalence of OTOC and SFF in the
context of RMT.

* The higher order corrected probability distribution function
obtained from the solution of Fokker Planck Equation carries the
signature of non-Gaussianity due to the presence of non vanishing
skewness and kurtosis.
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e OTOC in De Sitter (Global/Static/Planar)
space (Cosmology).

e Application in Black Hole Physics.

e Role of quantum entanglement in
Cosmology.

* Quantum gquench and eigenstate
thermalisation in Cosmology.

e Extension of the idea in case of open

quantum systems (Cosmology). -
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Then, we commeanl on the measurement lechniques of isospin breaking interactions of newly introduced
uxt PDF [721 KB massive particles and its further prospacts. After that, we give an example of the string theory-originated axion
Full-Text PDF With Caver monadromy model in this contaxt. Finally, wa provide a bound on the heavy particle mass parametar for any e
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Abstract

In this work, we study the phenomena of quantum entanglement by computing de
Sitter entanglement entropy from von Neumann measure. For this purpose we
consider a bipartite quantum lield theoretic set up for axion field, previously
derived from Type IT B string theory compactified to four dimensions, We conside
the initial vacuum to be CPT invariant non-adiabatic a vacua state under SO(1,4)
isometry, which is characterised by a real one-parameter family. To implement this
technique we use a S? which divide the de Siller into two exterior and interior sub-

regions. First, we derive the wave function of axion in an open chart for a vacua by

T

Page 89/90



Thanks for your time.....

MAX-PLANCK-GESELLSCHAFT

PERIMETER
INSTITUTE

irsa: 19110117 Page 90/90



