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Abstract: During this talk we shall discuss the backreaction of quantum matter fields on classical backgrounds by means of the semiclassical
Einstein equation.

We shall see that self consistent solutions of this coupled system exist in the case of cosmological spacetimes.

Furthermore, Einstein equations governing the backreaction will transfer quantum matter fluctuations to the metric.

In particular, we will see how the singular structure of quantum matter will affect the spectrum of metric perturbations
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Motivations

Quantum matter - gravity interplay is fully described only within:

quantum gravity.
However, in certain regimes, it is possible to analyse this interplay within
semiclassical approximation:

m QFT on curved spacetime

m Backreaction
Gab _— (Tab>w

Effects

m In cosmology (particle creation, some model of inflation)
m Black Hole Physics (Hawking radiation, evaporation)

It equates classical quantities with probabilistic ones.
The state is not a local object, the equation is not local.

Is it meaningful to search recursively for a solutions of the Semiclassical Einstein
equations?
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Plan of the talk

m Quantum field theory on curved spacetime: the trace anomaly.

m Semiclassical Einstein equation in cosmology.

m Existence and uniqueness of its solutions in cosmology.

This talk is based on
H. Gottschalk, P. Meda, NP, D. Siemssen, (in preparation).
NP, D. Siemssen, JMP 56 022303 (2015) .
NP, D. Siemssen, CMP 334 171-191 (2015).
NP, CMP 305 563-604 (2011).
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R Semiclassical equations

Semiclassical Einstein equation in cosmology.

m Cosmological spacetimes

(M.g). M=IxE.

m For flat cosmological spacetimes

g = —dt ® dt + a(t)’dx’ ® dx’

m t the cosmological time.

B ais the scale factor.

mH= % log(a) is the Hubble parameter.

m d7 = a 'dt is the conformal time g = a(7)? [—dT @ dT + dx' ® dx’] .

m One DOF hence: simpler equation
-R=(T)w, V.T* =0, p(70) = (Too)w = H*(70)

m We look for existence and uniqueness of solutions of that system.
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R Semiclassical equations

Matter fields

Massive scalar quantum field conformally coupled to gravity.

1
chz—D¢+6R¢+m2cp=0

Canonical quantization is very well under control on every globally hyperbolic
spacetime.

Assign to every spacetime a x—algebra of observables
M — A(M)
A(M) generated by linear fields ¢(f), f € C5°(M) implementing:
" (F)=¢(f), (K =0,  [o(f),e(h)] = iA(f,h).

Where A(f, h) = Ar(f, h) — Aa(f, h)
(retarded minus advanced fundamental solutions of K¢ = 0)

Pirsa: 19110108 Page 6/26



R Semiclassical equations

States

m A state w is a positive normalized linear functional over A

w: A=C

Once a state is chosen by GNS theorem we can represent A(M) as operators over
some Hilbert $ space and w as a normalized vector in ).

Different states on A(M) give rise to inequivalent representations, since A(M) is
chosen before the state we can still compare expectation values.

A(M) is generated by ¢(f), f € C5°(M) states are characterised by n—point
functions

Uv’n(fla ceey ﬁ)) = W(Q(fi) cae @(ﬁ)))
wn € D(M").
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R Semiclassical equations

Extended algebra of Wick polynomials

m We need to extend A(M) to include objects like
o'(f),  Ta(f)
However, these are divergent quantities
w(*(x)) = lim wa(y,x) = oo
y—X
We need a regularization prescription which implements some normal ordering.
In a Hadamard state the singular structure is universal:

O¢
2
Equivalent to Microlocal Spectrum Condition (remnant of the spectrum
condition).

w=H+W, H=—+Vig|

)+ w

Point splitting regularization

L@ (x) = lim p(x)e(y) — H(x, y)

y—Xx

We extend A(M) to include normal ordered Wick powers. @EEEED
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Semiclassical equations

Point splitting regularization - backreaction

m Stress-Energy Tensor:

Sk 1 Sl e 1 el 1 R
Tap := 0apObtp — < 8ab (c)ccpd @+ ngoz) ~ gv(adb)goz £ (Rab ~ Egab) o

Hence

Tap(x) = Jiﬂl Davp(x)e(y)

m Expectation values: obtained subtracting the Hadamard singularity ‘H from w2

(Tab)os 1= w(t Tap i) = lim Dap [wa(x, y) = H(x, y)]

m We need a rule to prescribe a state w on A(M) for every FRW spacetime M.

m Use the semiclassical equation to select M on which G,y = (Tap)w.
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Semiclassical equations

Components of (T)

m The trace of the stress tensor T can be decomposed in the following three
contributions

<T>w — lanomaly 75 Tren.freedom + Tstate

m Anomalous term is there because H is not a solution of the equation of motion.

We have enough freedom to require V’ Ii=0

- = 2 4
Tanomafy = 1 (CW;CUH -+ RURU -_ R— -+ DR) + mT

288072 3
m Renormalization freedom
T ren.freedom = am4 + ﬂm2R +~yUOR

B o expresses a renorm. of the cosmological constant = adding am® to £
m [3 expresses a renorm. of the Newton constant = adding Sm*R to L
m 7 is a pure quantum freedom. = adding YR? or YR;R" to L

m State dependent contribution
Tstate = mz[W]
W(x,y) = wa(x,y) — H(x,y) the smooth part in w>. [W](x) = W(x, x).
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Semiclassical equations

Effect of the anomaly

Assume T negligible, fix o, 3 we get an equation that can be solved.

m T =(—p P.P.P)

H* d H2H H* d
p:c—+;, P=—c BULS g e L

4 3 4

3a*
(d=0) two fixed points
H4

H2=?+/\

2 L G Lan
Hi = 5 (13& 1 C).

Near these fixed points the solutions can be obtained.
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Semiclassical equations

With some choice of v and 3 H = A and H = H, are stable solutions.

m (m = 0) a length scale is introduced (proportional to G).
Two fixed points instead of one [Wald 80, Starobinsky 80, Vilenkin 85].

m Quantum effects are not negligible at least in the past.

m The upper branch is not physically acceptable.
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Semiclassical equations

State dependent contributions

m Some hypothesis (state as close as possible to a “vacuum”)

m Gaussian (only w, matters)
m pure, homogeneous, isotropic

m The pure, homogeneous and isotropic Gaussian state

e L Xi(X0) Xk(¥0) ik (x~y)
el

Xk (7) + (m*a(7)" + kK )xi(7) = 0,
X k

=d, 4= _;
Xkar e
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Semiclassical equations

Initial conditions for y

At 7 = 79 we fix the state to be as close as possible to the vacuum.

In order to be close to the vacuum at 7 = 79 we fix

i w0 /
Xk(TO) — \/m ) )(L(TO) == ?O ) kO — k? + mzag

It is an adiabatic state of order 0 at 7 = 0.
(Although it is not Hadamard it is sufficiently regular to construct T) [Parker,
Liiders Roberts]

If we can do this for 79 = —o00 and if it corresponds to a null surface we get an
Hadamard state. (Bunch Davies in de Sitter)

No analytical solution for x, however, treating V = m?(a(7)? — a}) as a
perturbation potential x can be constructed by a convergent Dyson series around

ar ikoT

(T) = \/%
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Semiclassical equations

T for various states

Consider states constructed in such a way that

Rl S Xk(x0) Xk(¥0) | Xi(y0) Xk(x0) | ik(x~)
W(x,y)-W(x,y) ) /Rg(a(x()) oSl a(XO)) F(k)dk ,

where F(k) is rapidly decreasing.
Estimate

P = <T00>c2r = (TOO)w
Fix p at 7o then for 7 < 79 it holds that

C @
— < p<
g — a2a3

Obtained noticing that the energy per mode h = |x}|* + (k* + m?a®)|x«|? can only
decrease in an expanding universe.

States close to thermal equilibrium.

€

ol

a
Difference of energy density in two states behaves like ordinary matter.
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Semiclassical equations

After fixing the renormalization freedom («, 3 and v = —1/360) we may rewrite
the equation as a Volterra-functional equation.

For simplicity, in this talk, we will discard the anomalous part and we will assume
that A =0.

a(r)=ap+ m2/ [(W]a® dn
70

— 1 i v 1 -
W] = 555 fo [xm 2m] k* dk
Xk (T) + (m*a(7)* + k*)xu(1) = 0,
We fix the state so that it looks like the vacuum at 7 = 75.

Construct x with a convergent Dyson series around x° treating
v = (a° — a(0)?)m® as a perturbation potential

We can control {¢?),, = [W] w.r.to a’ and its (first-)functional derivative on

CO('TD,'T). @
e wlloo < c(lla'lloo, 7 = 70) ,  1D{p%)wlloo < (lla[loo, T = To)l|0a" |

We get an estimate valid on every spacetime (Va' € C°[r,7])
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Semiclassical equations

Local existence

The Volterra like equation seen before is thus a fixed point equation
a=~F(a)
we may then find a applying recursively F on aj.

A= Fia. 4] a= lim a,
n—oo

Proposition

Fix ap and the state at To. An unique solution a; exists in | = [0, T1) for some 71 > To.

Proved applying the Banach fixed point theorem to the Volterra like equation. The
estimates permit to construct a contraction map.
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Semiclassical equations

After fixing the renormalization freedom («, 3 and v = —1/360) we may rewrite
the equation as a Volterra-functional equation.

For simplicity, in this talk, we will discard the anomalous part and we will assume
that A =0.

a(r)=ap+ m2/ [(W]a® dn
70

— 1 % i 1 -
W= 5z [ [ = s | Kol
Xk(T) + (m*a(7)* + k*)xk(7) = 0,
We fix the state so that it looks like the vacuum at 7 = 7.

Construct x with a convergent Dyson series around x° treating
v = (a° — a(0)?)m? as a perturbation potential

We can control {¢?),, = [W] w.r.to a’ and its (first-)functional derivative on

CO('TD,'T). @
e wlloo < c(lla'lloo, 7= 70) ,  1D{p%)wlloo < (lla[loo, T = To)l|0a" |

We get an estimate valid on every spacetime (Va' € C°[ro,7])

Pirsa: 19110108 Page 18/26



Semiclassical equations

Global solution

Let a; in | = [0, 71) be a solution then, if a'(T1) do not diverge and a(11) > 0 the
solution can be extended further in a unique way to a; with | C J.

m We can order all the solutions a;. a; < ay is | C J = a maximal solution exists

Proposition

The maximal solutions is unique because of the unique extension.

Summarizing: fixing the initial condition, either the solution exists till infinity or a
singularity is encountered. (a = 0,3’ = o0)
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Semiclassical equations

Other initial values

Changing the initial values for x correspond to change the state.
Xk,1 = Axk + BX;

If the state are sufficiently close to w (B suff. reg.) we can still find solutions.
The obtained solution is at least C*.

The employed estimates for [W] do not permit to control the global behaviour
from the initial condition.

Numerical methods can be applied.
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Semiclassical equations

Generic coupling to the curvature

(Work in progress with H. Gottschalk, P.Meda, D. Siemssen)

Kp=-Op+E&Rp+ mip=0

m Modify the equation studied above accordingly

i
XkXk 2k0 4k3
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Semiclassical equations

Generic coupling to the curvature

m A careful analysis gives that the semiclassical Einstein equation has the form

V = L(V) + reminder, LV = / V'(n)log(T —n)dn
|

m where V = a““—: + corrections
m L(V) can be controlled only with V. (|| £(V)|lec < ¢||V'||oo)-
m L' exists and it is continuous (wrt to L* and L* norms)

m New fixed point equation
V = L7Y(V) = L (reminder) = F(V)

F(V) can be proved to be a contraction map.

m Numerical methods can be now used to find a solution.

» Spherically symmetric.
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Spherically symmetric case

Negative energy flux from conformal anomaly

A simplified model

2 = —2A(U, V)dUdV + R(U, V)? (d92 + sin Ozdgf)

Conservation of the stress tensor implies that

)
(VT)y =— 1 By (Tvsz)—ia (Tusz)_z.recvR g

AR? K- A R

Twv R? measures the flux of ingoing energy. Assuming the semiclassical Einstein
equation for a conformal massless scalar field

a Gl il 6
Te —SWGQ, T, = =2 A + 27T,

The trace anomaly

ol
288072

(Cabc:d Cﬁbcd _+_ RabRba g %R2)
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Spherically symmetric case

Vaidya metric

In advanced Eddington-Finkelstein coordinates

g=- (1 — %r(v)) dv® + 2dvdr + r*dQ

G’ = 0.

The trace anomaly of a massless conformal invariant scalar field is

2
T, = 48aM(:)
r

Assuming Tor? = 0 for r = oo, from V3T., = 0 we get

: 2
e iy ol gMM gy A 2M\ 4M
3 r r#

4 5 r

If M is small or M < O the flux of energy at r = 2M is negative.
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Spherically symmetric case

Dynamical mass change along the apparent horizon?

The semiclassical Einstein equation Gwr®= Twr?

2MM* 1 12M)\ 4M?
4 i

2M(v) = 48c (§ - =

On the apparent horizon (r = 2M) i

M(v) tends to decrease along H.

Question:
Is the full solution compatible with this observation?
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Summary

m Semiclassical Einstein equation can be used in cosmology.
m It is a well posed initial value problem.

m Numerical methods can safely applied provided the equation is written in a certain
way.

Thanks a lot for your attention!

Pirsa: 19110108 Page 26/26



