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Abstract: A spectral triple consists of an algebra, a Hilbert space and a Dirac operator, and if these three fulfill certain relations to each other they
contain the entire information of a compact Riemannian manifold.

Using the language of spectral triples makes it possible to generalize the concept of a manifold to include non-commutativity.

Whileit is possible to write down finite spectral triples, often categorized as fuzzy spaces, that describe discretized geometries, classical geometries
are encoded in infinite dimensional spectral triples. However working in numerical systems (and maybe ultimately in physical systems), only afinite
part of thisinformation can be encoded, which opens the question; If we know a part of the spectrum, how clearly can we characterise a geometry.

In thistalk 1 will present first steps towards answering this question.
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The problem of quantum gravity

General Relativity + Quantum Mechanics =7

» Many approaches: -
y app Non-commutative geometry

Causal Set theory
Causal Dynamical Triangulations  Tensor models
SPinfoam Group Field Theory
Asymptotic Safety Holography

Emergent Gravity S t ri n g t h eory

Loop quantum gravity

How can we understand them?

How can we construct solutions?
How can we extract predictions?

What is the space of geometries?
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The path integral of Quantum Gravity

(p, _ 1 1(9) €59 Dl
J 519 Dg]

Ingredients:

» Geometry g and measure D[g]
» Functions of geometry f
» Action S
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So what do I do?

MC simulations can measure (f(g)), but what are good f(g)?

Should be

» completely covariant

» space independent
» efficient to measure
» connect to physics?
» help us understand phase space
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Motivation: Can we hear the shape of a drum?

Eigenvalue problem:
For a membrane Q2 held fixed along bdry I
the eigenvalue problem can be stated as:

1 921(x) + Aatin(x) = 0
Yp(x)=0o0nT

(M‘.‘ Kelac,)Thc‘e Amer“icaln b&atl‘lematical Monthly 73, 1-23 (1966)4)/ 30
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Geometry as a spectral triple

» an Algebra A with action on H
(A, H, D) » a Hilbert space H
» a Dirac operator D acting on ‘H

Axioms of non-commutative geometry @

» S a faithfull action A in H

» ‘H is a bimodule over A (there is a left and a right action of A in
H)
» First order condition [[D, a>|,<b] =0 for a,b € A

?Abridged version
(A. Connes, Int.J.Geom.Meth.Mod.Phys. 5, 1215-1242 (2008))

(more detail e.g. A. Connes, Commun.Math.Phys. 182, 155-176 (1996))
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A simple geometry as a spectral triple

The circle as an algebra with a unitary operator U actingon H = L?(S")

uu* =1 D= D~
U*[D, U] = 1 U*DU = D + 1
Den - )\nen DUGn - ()\n -+ 1)Uen

U generates the algebra

azz.anU”

an € C

Spectral triple

for any algebra element a
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A simple geometry as a spectral triple

For a commutative torus take two S' generators U, V
uu=Vvv=r1
We can make the torus non-commutative by introducing
uv =9wvUu Y = ™0
U, V generate the algebra

a= Z an!mUn Vm
e

Vs

Spectral triple

for any algebra element a
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Fuzzy space (p, Q)

» The algebra are matrices:
A is a x— algebra M(n,C)
(s,H,A,T,J, D) > Acting on a Hilbert space:
H=V®MnC)
where Vis a (p, q)-Clifford module

» KO-dimension;
s=(qg—p)mod 8
» Chirality;
(v ® m) = ~vyv ® m with v the chirality operator on V
» Real structure;
J(v® m) = Cv® m* where C is charge conjugation on V
J: H — H with (Ju, Jv) = (u, v)

(as stated in J.W. Barrett J.Math.Phys. 56, 082301 (2015)7)/ >
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Dirac operator : Form

Conditions on D for a real spetral triple

D = Dt DI = 4D
DJ = +JD (D, p(a)s], <p(b)] = 0

Can be translated for a fuzzy space to:

left action right action
- / ‘ / *
D(v® m) = g wve ( Kim +¢ mK; )
i
(J. Barrett, J.Math.Phys. 56, 082301 (2015).)
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Explore path integral over fuzzy spaces

. _ | f(D)eS®dD
) = [es(DdD

_ [ f(D(Ki))e~SPEN T, dK;
[ e~ SOE) ], dK;
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The simplest action

S = goTr (D?) + Tr (D)

(J. Barrett, LG J.Phys. A49, 245001 (2016))

What do we want from an action?

» physical motivation
= lowest order when expanding a heat kernel

» bounded from below
= for some g»

> rises fast to infinity
= to make simulations possible
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More work on fuzzy spaces

Done:

» First tests of model (5. Barrett, LG J.Phys. A49, 245001 (2016))

» Spectral dimension
(J. Barrett, P.Wbruce, LG, "J. Phys: AS2 21520352019

Work pending:
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Features

» Diagonals away from PT
» Blob at PT, stronger correlation for larger N
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Truncating a spectral triple

Describing a smooth manifold as a
spectral triple leads to infinite
dimensional A, H.D ...

Replace the infinite D by a n x n matrix
D — P,DP,

with P, a projector on the n smallest eigenvalues.

We assume that the finite D is a truncation of the infinite one, and
that there are no small eigenvalues that we don't see.

Pirsa: 19110106 Page 16/30



Conditions on geometry

The one sided Heisenberg relation

(YD, Y]%) =~

Where v is a chirality and o
Ye AR C, Y =5 TiY' WithT; € C,and Y2 =5, Y'Y =1

Y is idempotent and Y’ are embedding maps for the sphere

Quanta of geometry

If D satisfies this equation & the axioms above the spectral triple is a
union of non-commutative d-spheres (for infinite spectra).

(A.H. Chamseddine, A. Connes, V. Mukhanov, Phys.Rev.Lett. 114, 091302 (2015))
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Heisenberg relations as a constraint

Can turn the one sided Heisenberg relation into a constraint for
computer simulations

fovio 1% 5

with ||a;|| 4 the Hilbert-Schmidt norm (element wise norm)

Motivation:

(A.H. Chamseddine, A. Connes, V. Mukhanov, Phys.Rev.Lett. 114, 091302 (2015))

(LG, A. Stern, W. van Suijlekom work in progress)
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is a (truncated) sphere

YD, Y|[D,Y] — 7 real part YD, Y|[D,Y] — 7 imaginary part
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This is not a sphere!
(but minimizes the Heisenberg equation constraint)

Y[D- Y”D~ 3] — 7y real part Y[D, YI[D, Y] — « imaginary part
l]

5] )l] -' J”

—004 —0.02 0.00 0.02 0.01 004 —0.02 0.00 0.02 0.0
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Analytic confirmation

All operators of the form D + ¢B, where B = sin(nD) and ¢ € C
satisfy the Heisenberg relation in the infinite case.

When we truncate both DS° and the Heisenberg equation
c= i1 /2 solve exactly? c =0, the sphere does not

ﬂ 7L KJ J() L

e
i IHHII

aif truncation is odd/ even
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Analytic confirmation

First order condition

The reason the solutions with ¢ # 0 are not relevant at infinite size is
that they do not satisfy the first order constraint

([f(DS°), a],<b] =0 a,be A,

and hence do not correspond to a spectral triple.
However the defect at finite size is similar for both cases.

Pirsa: 19110106 Page 22/30



Pirsa: 19110106

Non-commutative distance

Distance measure in non-commutative geometry

(A. Connes, Noncommutative Geometry. (Academic Press, 1994))

d(wy,w2) = sup {|wi(a) —wz(a)| - [|[D, al|| <1}

ac A

Calculate distance between points x, y from function f

figure from

(W. van Suiijlekom "Noncommutative Geometry and Particle Physics" Springer (2015))

21/ 30
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Larger cutoff = more points

We could alternatively have phrased the third point in the lemma as

follows: the maps ¢x and b (from 1) are asymptotically inverse to

each other in the sense that d(x (b o pp)(x)) = O(A~1) and
d((¢pa o b)(w),w) < /d(w) + O(A

In particular the prewous Iemma teIIs us how to scale the number of

generated states with A:

Corollary

A sequence of equidistributed subsets {V,}, of M, in the sense that
mind|y,xv,\a = ©(] V| ~1/™), will satisfy

9(0x.y) — d(én,(X). on, (V)| _
i d(x.y) =Y

as N — oo, whenever |Vp| = ©(rank Py,,).
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So how exactly do we define the states?

Localized states

We use the dispersion and the embedding maps Y; from the
Heisenberg relations

O(wi) = ) _{w] YFlw) — ¢

/

Now find a set of coherent states w that minimizes this and plug them
into distance equation. The repulsive potential is to ensure even
distribution of points.

We can use it to plot the states and the generated geometry using
the Y; as embedding coordinates, for illustration purposes.
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How does the state size change with the cutoff?

State for A = 4 State for A = 10

State for A = 16
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effect does the repulsive potential have

c=0 ¢ = 0.001
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A picture of geometry

The truncated sphere at size 60 The analytic solution at size 60

Embedded distance graph Embedded distance graph with B

» generate states for a n x n matrix & calculate pairwise distances

» use graph embedding algorithm to find a locally isometric
embedding

» wonder why the analytic solution is smaller
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Summary

Todays story:

» Exploring NCG using computer simulations
» simulations in fuzzy spaces
» truncated NCGs as basis for simulations

» first numerical tests of one sided Heisenberg relation
and Connes distance function

Immediate follow up:

» What is the difference between the two geometries?

» More simulations:
» two-sided Heisenberg equation
» path integral using Heisenberg equation as constraint
» More efficient imaging
= Use imaging on more states
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Thanks for listening to my talk,

and this fantastic conference!

Contact:
Email: lisa.glaser@univie.ac.at
Twitter: @GravityWithHat
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