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Abstract: Recent developments on asymptotic symmetries and soft modes have deepened our understanding of black hole entropy and the
information paradox. The asymptotic symmetry charge algebra of certain classes of spacetimes could have a nontrivial central extension, which
plays a crucia role in black hole physics. The Cardy formula of the asymptotic density of states of the dual CFT has been famously used to
reproduce the Bekenstein-Hawking entropy formula. However, without assuming holography, it remains obscure from the point of view of gravity
how such a constant on the gravitational phase space encodes the information about the density of black hole microstates, and what the gravitational
degrees of freedom accounting for the black hole entropy truly are. | will discuss my ongoing efforts of understanding these questions in the
covariant phase space formalism.
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Outline

Deriving Bekenstein-Hawking entropy formula has been one of the
first test ground for any theory of quantum gravity. I will discuss one
particular approach and unfold my questions.

Background and questions
Covariant phase space
Central extension
Non-equivariance of charges

Implimtinn from difﬂ'nmm‘phism vdgv modes
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[t was suggested 25 years ago that BH entropy is governed by the
horizon symmetries. The present of horizon as a boundary makes the

would-be-gauge d.o.f. to be new physical states. [Carlip, 94]

The first example of using Cardy formula for computing BH
entropy: [ Strominger, 97’

For the class of black holes which near horizon geometry
is locally AdS, but globally and topologically might not.

Derivation doesn’t based on string theory
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Extremal Kerr/CFT

[ Starting from Guica, Hartman, Song, Strominger, 08°]

)

Extreme Kerr .J = G M~ ro=1r_=M

Near horizon limit of the throat geometry [ Bardean, Horowizz, 99|

) _ , r — M L
Zoomin 7 ~ M\ region: r A A — 0 but hold ratio fixed
metric becomes:
) ) dr* 5 5 2sinf)
ds’ (1 4+ cos“0)J|—5 + db redt + ( — ) (dod + rdt)
i i | + cos<t '
fixed ¢  locally warped AdS;, ¢ ~ ¢ + 27 identified

Finite temperature CFT 7' = 1 /27

/
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Asymptotic symmetry vector fields for the near horizon limit
of the throat geometry

E=¢€(p)Dy — re (D)0,

(fharg(‘ a]g(‘bra forms Virasoro:

L 7
J | ' ' Y ‘
1/fm-/~uf (”" ”)Lm b Tl |.)”" Idmiu_t] ( IZ,/;‘/:

Quotient of AdS3 related to finite temprature CFT

Applying canonical Cardy formula:

f ™ o o :
SCFT —cl 2w Mo, OEzKerr
)

Page 6/23



Near extremal Kerr: The phase space of near-horizon region
exhibits hidden conformal symmetries wr < 1

[ Castro, Maloney, Strominger, 10 etc.|
Generic Kerr

Generic black hole: horizon preserving diI‘[l)nmorphisms are
enhanced to 5 M 53 symmetry. Using a generalized Cardy-

formula one can reproduce the Bekenstein-Hawking entropy!

| (‘(H‘H,}’, 17" 19%¢tc.|
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Questions

How does central cha rge encode black hole en tropy?
What microscopic states are accoun ted for?
The usual answer:

Cardy formula is a generic property for 2-d CFT. The black hole
microstates are the CFT states due to the holographic duality.
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Questions

How universal is such derivation?

Since there is no central charge for odd dimension CFT. Does it
imply dimensional reduction for 4-d generic black hole? Or, is there

a universal mechanism that beyond what 2-d CFT could capture?

From the gravitational phasc space point of view, how to
understand the appearance of central extension encodes the
information?

Let us see how does it arise generically

Pirsa: 19110102 Page 9/23



Covariant phase space formalism

[ Peierl 50s, Ashtekar, Witten, Crikouvie 80s, Wald, Lee, Tyer, Zoupas, Barnich, Compere, Harlow, Wu etc.|

[t is a formalism to study the d.o.f. of a gauge system, the Hamiltonian

and asymptotic symmetries in general covariant way.
Starting from the Lagrangian: L(¢, J,,¢...) spacetime d-form
0L = Eop + dO(¢p, 0¢)
symplectic potential (¢, 0¢) : spacetime d-1-form, field space 1-form
Building the symplectic structure from the space of on-shell solutions:

W ()()(() ()7(_-)) : {)L] U(() (ij(l‘)) ()_)U [ . (SI 0 ]

Eg: QED Ww=0ANx*x)F

Pirsa: 19110102 Page 10/23



Pirsa: 19110102

For local covariant thv()r{v:

Noether current: J¢ = 0(¢, Lep) — te L

(/;,L,-' — () rji/, [i /,-

On shell, the Noether current is trivially conserved

So locally _J(L)i\- Je f/(h)i\- (o) +C - FE

(doesn’t generate symmetry)
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A presym ploctic form associated with a Ca uch_\,f surface
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We need to ma p a spacetime vector field to plmsc space

C v ' /”' ! . ‘)
< C & (.![Lr)(,;}

-~

O

The diffeomorphisms that are truly gauge -- they are degenerate

direction of the presymplectic form

figz\:'(‘f’.()-]f).(j'j(}] S?\;(‘u.f.\‘]rﬂ_,['\:m} ()

Physical phase space is obtained by quotienting the subgroup
of gauge transformation whose vector fields on the phase space
corresponding to the degenerate direction of the presympectic

form.

The “large diffeomorphisms” that as physical symmetry acting

on the phase space.
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To find the Hamiltonian which generates non-trival gauge
transformations on the phase space:

(if 15 (D, 01 ¢, do) is not exact: add Wald-Zoupus counter term)
if it is exact:

0 Q:; (¢ 0, | where ¢ . (,‘)L rﬁ_(b);- LB, )

J X

The charge will be independent of the path:

.,.) »
Qecld: b / / gel0Q, O] + Nel|op
N LY J N L Jd “ L/ J
o (D . ()\;
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A few important points

Space of on-shell solutions

Symplectic form from Lagrangian

With boundary: trivial diffeomorphisms v.s. large diffeomorphisms
Boundary symmetry charges

Asymptolic symmetries: the boundar}«' condition and fall-off
conditions restrict on the space of solutions.
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The central extension:

When the charge is integrable,

v,
Qely; g / / qeldg, g] + Nelg]
. (j . l')\:

The charge algebra: {Q¢, Q,} = Q¢ ) + K¢ 9]

~

\'thI"L‘ f\,:;_f} g / (/i [ Q'(j: g "I\Ii-ff (j
J O
Two cocycle: K¢ .o + Koy + Kpjoje =0

[t is a Casmir function on the phase space, doesn’t

generate flow.
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Non-equivariance of charges

After getting the physical phasv space with non-degenerate symplectic

form, symplectic geometry language can becomes very intuitive:

Let us denote the action of the symmetry group (Lie group) G on

the phase space Pby ¢,

The Lie algebra element maps to a vector on the phase space
eg—Epc [P

C

under ¢, = (Ad, 1),
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The surface charge Q¢|®; @] is essentially the “moment map”:

The existence of non-trivial /\,L_,,

Q

Does not close!
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The surface charge Q¢|®; @] is essentially the “moment map”:

The existence of non-trivial /\,1‘_,,

Q

Does not close!
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One sufficient condition that K¢ ,, is trivial:

SZ\ (S(“)_\j &C n[/J{ ('“): — ()

1Q¢, Qnt = tetyfl = —1£1,00
= —1ed O 4+ 1600, = — L1, O + 1, L O

= O = Qg

Hence we need to break at least one of the two conditions, to get the

central term in the charge algebra....
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LS =g%0

Some part of the non-invariance can be absorbed by adding a field-
Some part of the n arian 1 be al bed | 1ding a field
space exact 1-form to the symplectic potential, which is essentially a

canonical transform on the phasc Space
©— 04 (5(1

For the rest of non-invariance, we can express absorb it in (¢
L ¢ (_') — Qt = (1 ¢
S S S

Then the central extension could be expressod as

e, = ap Lea L, ag

ST \‘fl‘ 4 /
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In the series work of the diffeomorphism edge modes

[ Donnelly, Freidel, Speranza, Riello, Geiller et .l

with presence of boundary, Os:;(¢,d¢) is not gauge invariant

The edge modes phase space is constructed from adding © s

so that the total symplectic potential is gauge invariant

£6(O+0ps) =0

Working in progress: the symplectic potential of the “edge modes”
which corresponds to normal diffemorphisms (generated by vector
fields normal to the boundary) cannot be fully localized on the

bounda ry.
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Discussions

The obstruction of constructing line-bundle in the geometrical
quantization

Non-invariance of Sy mplectic potential and the state degenemc_\«'

How does this picture of black hole entropy match to our

understanding of entanglement entropy?

How does the Card_v formula inspired derivation can be related to
the discrete approaches of quantum gravity?

Relation to the hologmphiv renormalization?
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