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Abstract: I'll describe my recent work on black hole seeded vacuum decay, and proposals for testing seeded decay in cold atom experiments. I'll
conclude with speculations on seeking insight into quantum black holes via experimentally constructing quantised analog black holes.
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OUTLINE

= Quantum Tunnelling
= Gravity in Tunnelling
= Black Holes

= Testing Tunnelling

= Qutlook
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EXPLORING QUANTUM GRAVITY?

Although we do not have an uncontested theory of
quantum gravity, we do have ideas on how quantum
effects in gravity behave below the Planck scale.
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QUANTUM EFFECTS IN GRAVITY

Below the Planck scale, we expect that spacetime is
essentially classical, but that gravity can contribute to
quantum effects through the wave functions of fields, and
through the back-reaction of quantum fields on the
spacetime.

We use this in black hole thermodynamics, cosmological
perturbation theory, and for non-perturbative solutions in field
theory, this method is particularly unambiguous, but can we
test these ideas in a broader sense?
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QUANTUM TUNNELLING

Developed by Coleman and others in the 1970’s.

Vacuum understood as an effective state, defined by the
minimum of a potential.

The potential itself depends on temperature and scale
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MOTIVATION

To motivate the calculation, step back to 15t year QM.
First meet tunneling in the Schrodinger equation. Standard

1+1 Schrodinger tunneling exactly soluble. Recall tunnelling
probabilities exponentially suppressed.
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EUCLIDEAN TRICK

A simple and intuitive way of extracting this leading order
behaviour is to take “classical” motion in Euclidean time:
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MOST PROBABLE ESCAPE PATHS

T —

by Banks Bender and Wu to
describe multi-dimensional
tunnelling, that then
motivates the field theory
Euclidean approach.
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HIGGS VACUUM

But the self-coupling of the Higgs changes with energy scale, so
this value — the Higgs at its lowest energy state — may not be
where we currently are!

. 200 Instability

The calculation depends on a
3 150 o Z
the masses of other - e g
. 1) |
fundamental particles ’ 0ol . %
. E &
(mainly top quark). & -
= sof g

Ot P e oo ——
0 50 100 150 200

Higgs mass M, in GeV

Pirsa: 19110097 Page 10/57



Pirsa: 19110097

Calculating the running of the
Higgs coupling tells us that we
seem to be in a sweet spot
between stability and instability —
metastability.
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The bigger picture from the
standard model tells us our
universe may be...

....nhot entirely stable!

We call this local — not global — minimum a false vacuum, and
expect there is a tunneling process to the true minimum / true
vacuum. This gives a first order phase transition.
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FIRST ORDER PHASE TRANSITION

A first order phase transition

proceeds by bubble nucleation -

In this case of true vacuum within -

false. This is described by > 2
quantum mechanical tunnelling, -
and was explored by Coleman -
and collaborators in the 70’s and

80’s.
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COLEMAN, 1977

Via guantum uncertainty, a bubble of true vacuum suddenly appears
in the false vacuum
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COLEMAN, 1977

Via guantum uncertainty, a bubble of true vacuum suddenly appears
in the false vacuum, then expands.

Pirsa: 19110097 Page 15/57



“GOLDILOCKS BUBBLE”

If a bubble fluctuates into existence, we gain energy from
moving to true vacuum, but the bubble wall costs energy.

Too small and the bubble has too
much surface area — recollapses.

Too large and it is too expensive
to form.

“dust Right” means the bubble
will not recollapse, but is still
“cheap enough” to form.
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EUCLIDEAN ACTION

This corresponds beautifully to the Euclidean calculation of
the tunneling solution: “The Bounce”

ENERGY 2R3
e o X 2m°R

GRS e x 2R /2

Solution stationary wrt R,
= R=30/¢
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COLEMAN BOUNCE

This gives us the bubble radius, and the amplitude for the
decay — backed up by full field theory calculations.

2R3 2772 o4
B=—-(oteR)~ =3

Tunneling amplitude, leading order:

Dacacall
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This gives the leading order or saddle point approximation to
the amplitude. We must also include fluctuations:

1/2 (B)D/Q -
e~ b

27

F_
= =

det S’,[(bpv]
det’ " [d5]

To get the nett decay rate per unit volume, per unit time.
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Does this Euclidean calculation mean anything real?
Conventional answer is to rotate back to real time: T — t

r2 L2 =R? 4 p2 _ 2 = R?

NN A
NN . . .
\\ | (e Real time picture is

/ that the bubble
expands rapidly.

r’ = R%* +t*
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GRAVITY AND THE VACUUM

This is not the full story! Vacuum energy gravitates — e.g.

a positive cosmological constant gives us de Sitter
spacetime — so we must add gravity to this picture
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GIBBONS-HAWKING EUCLIDEAN APPROACH

Extend partition function description to include the Einstein-
Hilbert action — at finite temperature we take finite periodicity
of Euclidean time.

]\/IQ

S = d*z+/|g|R + /d4$£SM

Fluctuations treated with caution, but saddle points
unambiguous.
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De Sitter spacetime has a Lorentzian (real time) and
Euclidean (imaginary time) spacetime. The real time
expanding universe looks like a hyperboloid and the
Euclidean a sphere:

ST
NS L

Our instanton must

Ny cut the sphere and
S / replace it with flat
| space (true
) o vacuum).
7T nﬁ“::é\\
AT T TSSO
i.ll_!II\"_\..{‘--.\_
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COLEMAN DE Lucclia (CDL)

Coleman and de Luccia showed how to
do this with a bubble wall: Euclidean de
Sitter space is a sphere, of radius ¢
related to the cosmological constant. The
true vacuum has zero cosmological

constant, so must be flat.

The bounce looks like a
truncated sphere.

Coleman and de Luccia, PRD21 3305 (1980)
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GOLDILOCKS WITH GRAVITY

We can play the same “Goldilocks bubble” game - finding the
cost of making this truncated sphere, but adding in the effect of
gravity.

02
— 21%el?’R? + 270 R3

2\ 2
B(R) = §7r2£€4 [1 - (1 -~ R—)
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CDL ACTION

Once again, too small a bubble will recollapse, and large
bubbles are harder to make, so there is a “just right” bubble that
corresponds to a solution of the Euclidean Einstein equations
that we can find either numerically with the full field theory, or
analytically if we take our bubble wall to be thin, and we can find
our instanton action.

A 4 g 3
e imd VR /Wd zVh
T o yg)2 = 65
—Ye X0) = "G 1+ 45262)2
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For the Higgs, this gives a half-life of
many hundreds of billions of years.
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BUT

Most first order phase transitions do not proceed by ideal

bubble nucleation, but by seeds.
These calculations are very idealised — an empty and
featureless background — what if we throw in a little

impurity?
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TWEAKING CDL

A black hole is an inhomogeneity, and also exactly soluble:

RG, Moss & Withers, 1401.0017

Pirsa: 19110097 Page 30/57



GOLDILOCKS BLACK HOLE BUBBLES

* The bubble with a black hole inside, can have a
different mass term outside (seed).

» The solution in general depends on time, but for each
seed mass there is a unigue bubble with lowest action.

« For small seed masses this is time, but the bubble has
no black hole inside it — no remnant black hole.

» For larger seed masses the bubble does not depend on
Euclidean time, and has a remnant black hole.

This last case is the relevant one — the action is the difference
in entropy (area) between the seed and remnant black holes!
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EUCLIDEAN BLACK HOLES

In Euclidean Schwarzschild,
to make the black hole
horizon regular, we must
have T periodic. This
“explains” black hole
temperature, but also sets a
specific value, 8ntGM.

: 2GM . . s s
ds? = (1 - ) dr? + (1 - ) dr® 4+ r2dQ%

i "
T

2
= M) +dp? + (2GM)2d0%,

Nde(

p° =8GM(r —2GM) 71~7+8TGM
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CONICAL DEFICITS

For different seed and remnant masses the periodicity Is
different — we need to deal with conical deficits. This
technicality is crucial to the calculation, and give a much
lower instanton action.

To subtract off the false vacuum background, we must
shrink the time circles to fit
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BLACK HOLE BOUNCES

Balance of action changes because of periodic time:

4 , R~ 20/¢

B~o XATR?L — e x —7R3L 3/
3 o
I3

The result is that the action is the difference in entropy
of the seed and remnant black hole masses:

< T — -

Seeded tunneling is much more likely than CDL!
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THE FATE OF THE BLACK HOLE?

Vacuum decay is not all that can happen! Hawking tells us that
black holes are black bodies, and radiate:

So we must compare evaporation rate to tunneling half-life.
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TUNNELING V EVAPORATION

Although we have computed bubble actions in full, we can
estimate the dependence of the action on mass using input
from our solutions which show that the seed and remnant
masses are very close:

B =n(r% ~ )

~ A (Mg + M,) (Mg — M,)

~ 8T MM —8mTM. M

=1'p xe
So our decay rate depends on an exponential of M, whereas

evaporation depends on an inverse power of M — tunneling
becomes important for smaller M

'y ~3.6x10"4M3

Page, PRD-76

Pirsa: 19110097 Page 36/57



There is a window of opportunity for small mass black holes!

i e
—————————————— Ae= 1.4x10"
SRS SS o= 18x10"

Ae= 1.83x10"2

Ip
AT

103

1o 102 103 10¢ 105 106 107
Seed Mass: M. /M,
Strictly, previous discussion is for Coleman'’s “thin wall” picture, so we had to re-do for thick,

realistic Standard Model Higgs bubbles numerically - modelling a fit to the 2-loop potential
and scanning over SM and BSM parameter space.
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PRIMORDIAL BLACK HOLES

Comparing power law with prefactor to exponential shows that
decay can only dominate for small black holes. Primordial Black
Holes are tiny black holes with masses of order a ton,
conjectured to form in the very early universe.

Have been conjectured
to explain the dark
matter in the universe
(though cannot be all of
it).
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PRIMORDIAL BLACK HOLES

Primordial black holes have a temperature above the CMB,
so these do evaporate over time. Eventually, they become
light enough that they hit the “danger range” for vacuum

decay and WILL catalyse it.

For the Goldilocks bubble
argument, we used Coleman’s
“thin wall” picture — this does not
correspond to the SM Higgs
potentiall However, can add ad

hoc term to potential to tune
between thin wall and SM &

integrate numerically.

2x 10" GeV

1x10" GeV

Page 39/57



Pirsa: 19110097

Primordial black holes start out with small enough mass to
evaporate and will eventually hit these curves.

Can view as a constraint on PBH’ s or (weak) on
corrections to the Higgs potential.

1013_

1.22 1.24 1.26 1.28 1.30

Dai, RG, Stojkovic
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TESTING VACUUM DECAY

Fialko et al proposed a 1
table-top analog of false
vacuum decay using a
Bose gas in an optical trap
with 2 different spin states
coupled by a microwave
field. Modulating the %% : n

amplltUde Of thlS fleld 4 Relalivezphase @ ’
stabilises a new false

vacuum state” allowing

vacuum decay to be \Ill — \Ilz \Ijl - _\Ijz
potentially observed.

Fialko, Opanchuk, Sidorov, Drummond, 1408.1163, 1607.01460
*Braden, Johnson, Peiris, Weinfurtner, 1712.02356
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BUILDING BUBBLE PROFILES

The instanton will be a solution to the (NREL) Euclidean
Gross-Pitaevski equations corresponding to a bubble of true
vacuum inside false.

I I I COMMON
PHASE
RELATIVE

DENSITY RELATIVE
PHASE

COMMON

DENSITY
The false vacuum and bubble have n=0, with varying relative
phase and density for the bubble.
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COLEMAN DECAY
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The false vacuum is uniform with constant density, the
bubble interpolates to aligned wavefunctions at its center.
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THE SEED

The vortex has n=1 (or more) and exactly corresponds to a
global vortex density field

P AV APV VW 1.00 ) —
d 4 o — % L} -~ 0.75
y oy o = ~ NN\ %
|
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: 4 1 g
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» » » o o 4
~ v ] 0.00 . . ‘ . .
L S e A 00 25 50 75 100 125 150
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SEEDED AMPLITUDES

Calculating the action of the instanton shows that it
decreases for seeded tunneling:

Tunnelling Exponent S

12

10

e B N l
/ - — =125
- — ~ ~— A=12

I I I |
0.05 0.10 0.15 0.20 0.25

Energy Difference ¢?
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TRUNCATED WIGNER METHOD
An alternate method is 30 1(2) Kol
to use the Gross
Pitaevskii eqn to evolve A
the system, using zero -50
temperature initial noise
to populate the states of ¥
the system. —

O . ,

50 - (b) = FEae

. 50
U, =V, py + f(r) Zﬁikezk'r ' L

k 50

0 4%

Results show the seed

I ‘ _50 pEas 0
also instigates decay.
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SUMMARY & WHERE NEXT

» Vacuum decay is an example of quantum effects in
action with gravity — we have good tools, but they are

idealised.

* Tunneling amplitudes significantly enhanced in the
presence of a black hole — bubble forms around black hole
and can remove it altogether. Important if Higgs vacuum
metastable.

* Maybe we can use tabletop experiments to test ideas of
vacuum tunneling? Need to:

» Sidestep instability — finite T7?
» Develop new (3 cpt) system
» Check whether truncated Wigner is right for tunnelling.
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Tom Billam
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Tom Billam
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Tom Billam
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Tom Billam
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Tom Billam
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SUMMARY & WHERE NEXT

= Vacuum decay is an example of quantum effects in
action with gravity — we have good tools, but they are

idealised.

» Tunneling amplitudes significantly enhanced in the
presence of a black hole — bubble forms around black hole
and can remove it altogether. Important if Higgs vacuum
metastable.

* Maybe we can use tabletop experiments to test ideas of
vacuum tunneling? Need to:

» Sidestep instability — finite T?
» Develop new (3 cpt) system
» Check whether truncated Wigner is right for tunnelling.
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