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Abstract: Complements offer a separating device which proves useful for renormalisation purposes. A set and its set complement are digoint, a
vector space and its orthogonal complement have trivial intersection. Inspired by J. Pommersheim and S. Garoufalidis, we define a class of
complement maps which give rise to a class of binary relations that generalise the digointness of sets and the orthogonality of vector spaces. We
discuss how these reflect locality in quantum field theory and how they can be used for renormalisation purposes.

Thistalk is based on joint work with Pierre Clavier, Li Guo and Bin

Zhang.
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be of any use for a particle accelerator?

They serve to separate subdivergences by means of

@ either a coproduct and the induced algebraic Birkhoff-factorisation

(a la Connes and Kreimer) using the associated convolution product;

@ or a locality relation and the induced multivariable (3 la Speer)

minimal subtraction scheme,

both of which provide a device to extract finite parts from divergent
quantities arising in quantum field theory
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@ the set complement P(X) — P(X) which sends A to X \ A;

@ the orthogonal complement s(V) — s(V) on an euclidean
space V which sends W to W .

These complement maps stablise the set 3(X) (resp. s(V)) of
subsets (resp. subspaces) of the set X (resp. the vector space V).

or nent maps should also include

@ the "conical complement" of a face of a convex cone;
@ the "tree complement" of a subtree of a rooted tree;

o the "graph complement" of a subgraph of Feynman graph.
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The above complement maps W are defined on posets (P, <) with a
smallest element
Q On the power set (P(X), C) of a set X whose smallest element is ();

© On vector the set (s(V), < "to be a subspace of") of linear
subspaces of a vector space V whose smallest element is {0};

© On the set (F(C), < "to be a face of") of faces of a convex
poyhedral cone C, whose smallest element is {0};

©Q On the set (7(t), < "to be a rooted subtree of") of subtrees of a
tree t whose smallest element is the root (¢ < tif ¢ is the trunk that remains

below an admissible cut of t),

On the set (&(I), < "to be a 1 Pl subgraph of") of subgraphs of a
graph I whose smallest element is the empty graph (r' < ris either empty
or a nonempty (connected or disconnected) set of internal edges in I together with the vertices

they encounter).
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©® On cones: the transverse cone
V(F) = t(F,C) := me1(C) € €(R¥) for a face F of
C € ¢(RK);

@ On trees: V(t') = P.(t') € F(t) for a subtree t’ of t obtained
from the admissible cut ¢, here P.(t') is the crown above the
cut, which might be a forest and not a tree;

© On graphs: W (I'") € &(I) for a subgraph I'" of T, is the
contracted graph I\["" obtained by replacing all connected
components of [’ by their residues inside I'.
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©® On cones: the transverse cone
V(F) = t(F,C) := me1(C) € €(R¥) for a face F of
C € ¢(RK);

@ On trees: V(t') = P.(t') € F(t) for a subtree t’ of t obtained
from the admissible cut ¢, here P.(t') is the crown above the
cut, which might be a forest and not a tree;

© On graphs: W (I"") € &(I') for a subgraph I'" of T, is the
contracted graph IM\[" obtained by replacing all connected
components of [ by their residues inside I'.
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(inspired by Garoufalidis and

Pommersheim)

For E in a poset (P, <), weset s(E):={AecP|A<LE}

on P is a family of maps

Ve:s(E)oP,An Ve (A)=E/A EE€P,
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(inspired by Garoufalidis and

Pommersheim)

For E in a poset (P, <), weset s(E):={AecP|A<LE}

on P is a family of maps

Ve:s(E) > P,AVeg(A)=E/A EE€P,

such that
Q s(E/A)={B/A|A< B<E};
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(inspired by Garoufalidis and

Pommersheim)

For E in a poset (P, <), weset s(E):={AecP|A<LE}

on P is a family of maps

Ve s(E) = P,A Ve(A)= E /A

such that
Q s(E/A)={B/A|AL<B<LE};
@ (C/A)/(B/A)=C/Bfor A<B<LC;
©@ E/1=E forany E € P.

All the above examples are complement maps on posets.
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A complement map V on a connected poset (P, <,1) gives rise to
a coproduct

A(E):= ) Ve(A)®A, (1)

Aes(E)
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(inspired by Garoufalidis and

Pommersheim)

For E in a poset (P, <), weset s(E):={AecP|A<LE}

on P is a family of maps

Ve s(E) = P,A Ve(A)= E /A

such that
Q@ s(E/A)={B/A|A< B<E};
Q@ (C/A)/(B/A)=C/BforA<B<C;
Q@ E/1=E forany E € P.

All the above examples are complement maps on posets.
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used to preserve

@ A graded algebra P = ®;2,P, and a target algebra M.

@ A coproduct Ap on P and a related convolution product

¢1 % @2 = mpq 0 (1 ® ¢2) o Ap of maps
oi : (P,mp) — (M, mpq).
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used to preserve

@ A graded algebra P = ®;2,P, and a target algebra M.

@ A coproduct Ap on P and a related convolution product
¢1 * ¢2 = Mmpq 0 (¢1 X gbz) ¢] A-p Of maps
oi : (P,mp) — (M, mpq).

The role of the yduct: Birkhof factorisation Connes and
Kreimer 98’

The coproduct is used to undo "fake" finite terms arising from
hidden subdivergences: ¢ = ¢_*"1x¢,.
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used to preserve

@ A graded algebra P = ®;2,P, and a target algebra M.

@ A coproduct Ap on P and a related convolution product
‘;bl * gﬁz = Mmpq 0 (¢1 X ¢2) ¢] A-p Of maps
oi: (P,mp) — (M, mpq).

The role of the t: Birkl Hopf factorisation Connes and
Kreimer 98’

The coproduct is used to undo "fake" finite terms arising from
hidden subdivergences: ¢ = ¢_*"1x¢,.

la [BPHZ] 57-68
The renormalised map ¢™" := evg o ¢ is multiplicative:

qbren(pl Pz):ﬁbmn (Pl) qbren(pz).
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Q cones: A(C) =) r4ct(F,C)QF;
Q@ trees: A(t) =3 oo P(t)®F;
Q graphs: A(M) =3 M\

can be used to implement

on maps ® : P — M(C) with values in meromorphic germs at
zero:

© discrete sums on cones: ®(C)(3) = > zccnzx H;(=1 n’ for a
simplicial cone C C R¥, 3 € ZX,;

© zeta functions on trees: ®(t)(3) = ((—a), |V(t)| = k and 3’ € Z’éo;
© Feynman graphs: ®(I') = Feynman integral associated with T.
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@ A locality relation (or independence relation) on a set Xis
a symmetric binary relation T C X x X. For x1,x2 € X, we
write x1 [ x2 if (x1,x2) € T. We use the notation X x1 X for
T and call (X, T) a locality set.

@ For a subset U of a locality set (X, 1), let

U' ={xeX|(U,x)C Xx: X}

is the polar subset of U.

Q Disjointness A T B <= A B = () on a power set P(X));
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of events

Given a probability space P := (2, L, P) and two events A, B € ¥
Al B <= P(AnB) = P(A)P(B).

Given two positive integers mnin N: m | n<= m/ n=1.

manifolds

Given two submanifolds L; and L, of a manifold M:
Ly T Lh<= Linly< T+ T, L, =T,M VxeLnNL,.

of supports

Let ¢ > 0 and U C R" be an open subset. Two functions ¢, € D(U)
are independent i.e., ¢ | ¥ whenever d (Supp(¢), Supp(v)) > e.
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A complement map VW on a poset (P, <, 1) with biggest element E
gives rise to a locality relation

ATyB<= (BeVg(A) VvV Aec Vg(B)).

@ Disjointness on P(X): AnB=0 <= (AC X/B VB C X/A);
@ Orthogonality on s(V): AlB<= (ACB" v BC A').

Warning: Not every locality relation arises from a complement map.

Q cones: GG T G <= (G | G
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of probabilistic events

One event has no effect on the probability of another event
occurring.

of events in QFT

An object is only directly influenced by its immediate surroundings. Two
events situated in different locations do not influence each other.
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of probabilistic events

One event has no effect on the probability of another event
occurring.

of events in QFT

An object is only directly influenced by its immediate surroundings. Two
events situated in different locations do not influence each other.

Observable @ — Measurement () € C

A >4

O O OD1x(Ds) = ((Dq1)-((H).
1and 02 = (01x03) = (0,1)-(0>)

; : e
independent locality multiplicativity
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renormalisation (inspired by Speer)

We swap

@ the coproduct A on the source space P for a locality relation | x4
on the target space M: Ap ~ | o

@ univariate for multivariate meromorphic functions:

M(C) ~» M(C>);

@ Birkhoff-Hopf factorisation for a (naive) multivariate projection
h4 ~ T4 0.
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renormalisation (inspired by Speer)

We swap

@ the coproduct A on the source space P for a locality relation | x4
on the target space M: Ap ~ | o

@ univariate for multivariate meromorphic functions:

M(C) ~» M(C>);

@ Birkhoff-Hopf factorisation for a (naive) multivariate projection
h4 ~ T4 0.

@ It naturally encompasses the locality principle;

@ Its universality: renormalisation 7 takes place on the target space
M(C>®) common to various problems.
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A complement map gives rise to

@ a coproduct which served to mimick the forest formula by
means of an algebraic Birkhoff factorisation procedure;
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A complement map gives rise to

@ a coproduct which served to mimick the forest formula by
means of an algebraic Birkhoff factorisation procedure;

@ a locality relation which served to implement a multivariable
minimal subtraction scheme in accordance with the locality
principle.
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A complement map gives rise to

@ a coproduct which served to mimick the forest formula by
means of an algebraic Birkhoff factorisation procedure;

@ a locality relation which served to implement a multivariable
minimal subtraction scheme in accordance with the locality
principle.

Both serve to

e cure divergences and renormalise;
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Versus

From a complement map we have built a locality relation.
Theorem: There is a one to one correspondence between a class of
locality relations and complement maps on finite dimensional vector

spaces.

in multivariables

Appropriate complement maps yield a splitting of meromorphic
germs.
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' tic Versus com -

From a complement map we have built a locality relation.
Theorem: There is a one to one correspondence between a class of
locality relations and complement maps on finite dimensional vector

spaces.

>

5 in multivariables

Appropriate complement maps yield a splitting of meromorphic

germs.
Theorem: A class of complement maps ensure a splitting of the
space M(C¥) = M (C*) & M _(C¥) and gives rise to a theory of
Laurent expansions on M(C¥).
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THANK YOU !
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