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Abstract: Causal Dynamical Triangulations (CDT) is a candidate theory for quantum gravity, formulated nonperturbatively as the scaling limit of a
lattice theory in terms of triangulated spacetimes. An important feature of this approach is its elegant resolution of the problem of diffeomorphism
symmetry in the full, background-free quantum theory. This has enabled the concrete computation of geometric observables in a highly
nonperturbative, Planckian regime, an important step in putting quantum gravity on a quantitative footing, and understanding the structure of
guantum spacetime. While the need to find quantum observables describing this regime is common to all approaches, CDT provides a concrete
testing ground for implementation and measurements. In particular, a new notion of quantum Ricci curvature has opened a new window on the
counterintuitive properties of quantum geometry.
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Preview

The context of my talk is the search for a theory of quantum gravity
beyond perturbation theory and the ongoing research program of
Causal Dynamical Triangulations (CDT) addressing the problem. In
view of the workshop’s theme and audience, | will try to take a broad
perspective. | will describe some structural aspects, important
problems and new insights this approach has helped bring to the
fore, and which may well be relevant for quantum gravity generally.

My presentation will discuss

e “guantum spacetime”, whence and whither?

“fundamental continuity” and the hidden power of Regge calculus
symmetry and diffeomorphisms (homage to Noether)
nonperturbative, scale-dependent observables
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What is quantum spacetime?

A “spacetime” with quantum properties near the Planck scale ~ ¢p;,
which in a suitable macroscopic limit can be approximated by a
classical curved spacetime of General Relativity.

(artistic) impressions of
“quantum foam”:
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Quantum spacetime from quantum gravity

More specifically, a “quantum spacetime” implies the presence of
dynamics and refers to a solution of suitable quantum equations of
motion. Even more specifically, we are interested in the theory’s
vacuum, the “mother of all vacua”. This requires quantum gravity
beyond perturbation theory, with no single way of how to proceed.

Apart from their choice of elementary degrees of freedom and a
dynamical principle, different a pproaches to quantum gravity can
be distinguished by how much background structure they use, e.g.
whether metric, differentiable and manifold structure, topology,
dimension etc. are fixed a priori or part of dynamics, and which

extra structures and assumptions they use, e.g. additional
symmetries, a choice of preferred “

variables”, extra dimensions, ...

CDT QG makes choices that are “simple, but not too simple”.
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Quantum spacetime: sense or nonsense?

nonperturbanve, Planckian

. el
classical - ;

I00MINg in on a piece
of empty spacetime

Going far beyond just discardin

(M,g,), it is often argued that quantum
must be “fundamentally discrete”

For “quantum spacetime” or “quantum
geometry” to have any relevance, we assume:

There is a quantitative description of physics at
the Planck scale, despite £p = 10 35m.

This Planckian physics has an associated pheno-
menology; quantum signatures of quantum
spacetime exist beyond perturbation theory.

The underlying quantum gravity theory is

“reasonably unique” (few tunable parameters).

What ensures uniqueness or universality at £5?

g smooth classical Lorentzian manifolds

gravity and spacetime near £p|
(operational meaning?).
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An alternative suggestion

Key to progress in nonperturbative QG is fundamental continuity

(“continuous, but not smooth”), in the spirit of Regge calculus.

® nonsmoothness “standard” in quantum theory (cf. quantum particle)

® much less radical than fundamental discreteness, can still calculate

® Regge calculus, apart from being a convenient regularization of
curved geometries in terms of piecewise flat spaces, does not use
coordinates. While classically this is “just a feature”

: , its full power
becomes apparent in nonperturbative quantum gravity a la CDT
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Spacetime geometry (textbook version)

\r

e Classically, differentiable manifolds
© | Mprovide powerful and extremely
@> iy L) convenient models of spacetime.

———J e geometric properties encoded in

ge the Riemann curvature tensor R¥uv(x)
differentable manifold M and 2 coordinate chart
® However, this description comes with an enormous redundancy,
the “freedom to choose coordinates” without affecting the physics.

® The “gauge” group of GR is the infinite-dim. group of coordinate
transformations (diffeomorphisms) on M. Two key challenges of
quantum gravity are how to implement this symmetry and describe
physics in terms of diffeomorphism-invariant quantum observaples.
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Regge Calculus

simplicial approximation of a curved manifold
(M, gu(x)) > (T, {£i2, i=1,...,n})

in terms of a ‘triangulated’ manifold T with
(squared) edge length assignments #,2

The geometry is encoded in the connectivity of the triangulation T
and the edge lengths which fix the geometry of each flat triangular

building block uniquely. In terms of these variables, one can describe
“General Relativity without Coordinates” (T. Regge, 1961)

gravitational action substituted, S [gu) > SRease(T, (£, 24

Aw simplicial manifolds carry singular
\/

3
I=ss 5 Curvature assignments in the form
A of “deficit angles” ¢ = oy - 2

, With the

Gluing five equilateral triangles around a vertex generates a surface with Gaussian curvature (deficit angle ¢) at the vertex
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Regge Calculus reloaded

4D simplex, building
’ block of a spacetime
[ i in R lculus
® classical Regge calculus: try and implement in Regge calcu
in numerical evolution schemes (R. Sorkin et al., L. Brewin, A. Gentle, ...)

® semiclassical/linearized Regge calculus: recover correct degrees of
freedom (M. Rocek & R. Williams, B. Dittrich et al., ...)

® N.B.: Regge calculus has no fundamental status, it is a (non-unique)
approximation scheme, and convergence issues must be considered
o very different application in non
(a) “Quantum Regge Calculus”: fi
H. Hamber & R. Williams, )

(b) “Dynamical Triangulations”: fix £;2 =+ a?, sum over all T of fixed
topology (M. Agishtein & A. Migdal, J. Ambjgrn & J. Jurkiewicz, ...

e (a): no analytical calculations; residual
not Liouville gravity in 2D: most impo

pert. 4D gravitational path integral:
x T, integrate over all #,2 (8. Berg,

gauge symmetry? measure?
rtant: QRCis purely Euclidean
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Regge Calculus reloaded
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gauge symmetry? measure?
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Introducing CDT Quantum Gravity

We have learned from Monte Carlo “experiments” that nonperturbative
path integrals for 4D gravity based on statistical ensembles of (Euclidean
or Wick-rotated) geometries suffer from very generic instabilities, which
seem to prevent the dynamical generation of extended 4D geometry in a
suitable classical limit.

The only known cure is that of Causal Dynamical

Triangulations (CDT), a manifestly diffeomorphism-

invariant and background-independent path

integral a la DT, whose gluing rules implement

a well-defined causal (light cone) structure.

COT configuration with local light cones
® no models are known where causal structure “emerges”

® causal structure not fixed, but quantum-fluctuates as part of geometry
e Euclidean path integral (probably) not good enough

e gravity ‘on a lattice’ does not imply breaking diffeomorphism invariance!
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Quantum Gravity from CDT

The (formal, ill-defined) continuum gravitational path integral

Newton’s

cosmological constant

constant Z(GN, A) = [ Dg eisgig,n 9]

spacetimes

g€eg

(“sum over
Einstein-Hilbert histories™)

action

is turned into a finite regularized sum over triangulated spacetimes,

UV cutoff {Y 2200

# building blocks

>

inequiv.
triangul.s
TE ga TN

C(T)

L isgsm

bare, discretized

EH action
|Aut(T)|

whose continuum limits are investi
(N.B.: no residual gauge symmetry

gated after an analytic continuation.

; obeys reflection positivity)

REVIEWS: J. Amb;

127 [arXiv: 1203.3591]); NEW: RL, CQG 2019 |

@rn, A. Gorlich, J. Jurkiewicz & RL,

arXiv:1905.08669]

Phys. Rep. 519 (2012)
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The Emergence of Classicality from
Causal Dynamical Triangulations (CDT)

obtaining a macroscopic
universe with a de Sitter shape,

From pure quantum excitations, CDT generates a
spacetime with semiclassical properties dyna-
mically, without using a background metric.

Other key results/properties:
® crucial role of causal structure

S A - ” from a superposition of
nontrivial phase structure, with “classical” phases

“wild” path integral histories:

second-order phase transitions (unique) 0
scale-dependent spacetime dimension (2> 4) X
applicability of renormalization group methods e

Everything we have learned about “quantum

spacetime” in CDT QG comes from measuring
a few guantum observables.

Page 15/22
Pirsa: 19110084



The story of observables: classical

® Classical gravitational observables are diffeomorphism-invariant (and
therefore usually nonlocal) quantities.

For example, g,.(x) and R(x) are not

observables while/ d'e\/g R(x) is. M
SN

® In continuum approaches to quantum gravity, implementing diffeo-

morphism invariance beyond perturbation theory is a major source of
technical and conceptual problems.

® In CDT, we have got rid of this problem by eliminating coordinates
and any coordinate redundancy. However, what gre quantum-
gravitational observables in the absence of diffeomorphisms?

[health warning: “observable” does not imply a direct link to phenomenology]
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The story of observables: quantum

® Observables in CDT QG are formulated in terms of geometric notions,
like distances and volumes, but do not rely on smoothness.

® Like in the continuum, one is not allowed to ‘mark’ a point (curve,
surface, ...) in terms of some extrinsic labels. A quantity “at a point” is
still not a meaningful concept, and must be averaged over spacetime,
in addition to summing over geometries, to obtain an observable.

® Computer simulations work with labelled triangulations, but are set
up to be invariant under relabellings.

® discrete relabellings are merely ‘moral equivalents’ of smooth
coordinate transformations: the two groups are not related, but we
contend that their corresponding quotient spaces are:

Metrics(M)/Diff(M) «» (unlabelled) DTs

Given that quantum observables are non

local quantities, can we
get a handle on any short-

scale properties of quantum spacetime?
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Yes, in an average sense

® We can define quantum observables Os which are spacetime averages, but
nevertheless depend on a length scale & that is being probed,

= 1 i
©5)=~ [ Dy Oslg] =519, 04[] = / v /5 Os 9]
JNT

® This is important, because we want to identify short-scale quantum effects
and verify the presence of long-distance classical behaviour.

® We have several observables of this type in CDT quantum gravity.

An example is the volume of a geodesic ball of radius R,

(Vol(Br)) x R
from which we extract the Hausdorff dimension d,.

© For the spectral dimension Ds, the relevant %‘_1
observable is the average return probability 1S N

T VA

geodesic balls 84 of radius R in 2D
1
Ry (o) :=

d_. T 1
V() ./.\!d T P(r.2:0)

(ID~ /2
diffusion time

sol.n to heat equation
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A new example: quantum Ricci curvature

In D dimensions, the key idea is to compare the distance d between
two (D-1)-spheres with the distance & between their centres.

The sphere-distance criterion:

“On a metric space with positive
(negative) Ricci curvature, the distance
d of two nearby spheres Soand Sy is

smaller (bigger) than the distance & of
their centres.”

P oty [ ey S e > i e om
| . \ Eiime \ 1y (g
L WL S | Via L»! !‘_u» r -‘\‘[1.., " b

spheres of radius 6 whose centres are a distance 6 apart,

» involves only distance and volume measurements l

» the directional/tensorial character is captured by the “double sphere”
> again, coarse-graining is captured by a varigble length scale &

Our variant uses the average sphere distance d of two A\
L
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Implementing quantum Ricci curvature

From the quotient of sphere distance and centre distance A
we extract the “quantum Ricci curvature K, at scale 6, '
d(SHSH) : ) i :
—’T’-— =G = l@p ) O=dpd) Ve <8 e

where ¢, is a non-universal constant. The simplest observable (Ricci
scalar) is obtained by first averaging over p’, and then p.

To interpret quantum results, we are
h li 1 Kq HAT .
AR GO currently building a reference library,

computing Kq(8) on various classical

flat space: K, = 0 . .

spaces (constantly curved, ellipsoids,
orbifolds, ...), which is very nontrivial
‘\\;_;?here: Ke>0

< and gives us a new way of thinking of
TR their invariant properties.

Page 20/22



Pirsa: 19110084

Summary

Finding quantum spacetime is a dynamical issue that requires a
sufficiently complete candidate theory of nonperturbative QG.

I'argued for “fundamental continuity” as a guiding principle.

The full power of Regge’s idea of describing geometry without

coordinates can unfold in nonperturbative QG, yielding a manifestly
diffeomorphism-invariant formulation.

l'used CDT quantum gravity to illustrate all of these points. They lead
10 2 new perspective on the all-important issue of observables.
Despite the absence of smoothness, one can define a new class of
global, but scale-dependent observables, including curvature.

They will hopefully enable us to uncover unive
quantum spacetime and quantum
and bring us closer to finding true

rsal properties of
gravity in a Planckian regime,
quantum signatures,
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