Title: Everpresent Lambda in CosmoMC

Speakers: Nosiphiwo Zwane

Collection: Everpresent Lambda: Theory Meets Observations

Date: November 13, 2019 - 11:00 AM

URL: http://pirsa.org/19110070

Pirsa: 19110070 Page 1/24

Pirsa: 19110070 Page 2/24

Pirsa: 19110070 Page 3/24

Model 1

Proposed by Ahmed et al.

- The universe is assumed to be spatially homogeneous.
- In this model dark energy undergoes a random walk as described by these equations

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{1}{3}\rho_m(t) - \frac{\rho_{\Lambda}(t)}{3},$$

$$V(t) = \frac{4\pi}{3} \int_0^t dt' a(t')^3 \left(\int_0^{t'} dt'' \frac{1}{a(t'')}\right)^3 \text{ for k=0},$$

$$N(t) = V(t)/\ell_p^4,$$

$$\rho_{\Lambda}(t + \Delta t) = \frac{S(t) + \alpha \xi \sqrt{N(t - \Delta t) - N(t)}}{V(t)}.$$

Ahmed, Dodelson, Greene, Sorkin, Phys. Rev. D 69 (May, 2004) 103523.

Model 2

- Simpler to simulate.
- The universe is assumed to be spatially homogeneous.
- Λ is again assumed to be a random function of cosmic time.
- Two parameters are introduced: $\alpha-$ controls the magnitude of fluctuations and $\mu-$ controls the coherence time.
- Λ is a Gaussian process with the correlation at different times being

$$\left\langle \hat{\Omega}_{DE}(\lambda_1) \hat{\Omega}_{DE}(\lambda_2) \right\rangle = \alpha^2 e^{-\frac{\mu}{2}(\lambda_1 - \lambda_2)^2}$$

where

$$\lambda = log(a)$$

 $\alpha =$ characteristic scale of the fluctuations

$$\mu^{-1/2} = \text{characteristic e-fold}$$

$$\Omega_{DE} = anh\left(\hat{\Omega}_{DE}
ight)$$

Pirsa: 19110070 Page 6/24

Everpresent Λ and the CMB

- Cosmic Microwave Background (CMB) anisotropies currently provide the most precise tests of cosmological models.
- To fit our Everpresent Λ model, we use CosmoMc together with CAMB.
- Model is stochastic.
- We assume the universe is flat.

4 C > 4 C > 4 C > 4 C > 2

Nosiphiwo Zwane

Everpresent A in CosmoMC

Simulations and Analysis

Table: Table for Likelihoods

	ΛCDM	Everpresent A (Model 2)
CMB: BKPLANCK	45.117	44.336
CMB: lensing	12.157	13.030
plik	1164.783	1165.278
IowTEB	10098.485	10097.864
BAO: 6DF	0.087	0.291
BAO: MGS	0.927	1.217
BAO: DR11CMASS	2.856	3.015
BAO: DR11LOWZ	1.098	1.142
BAO-Busca: DR11LyaAuto	4.265	2.636
BAO-Andreu: DR11LyaCross	4.748	4.245
Total	11332	11334

CosmoMC CosmoMC

Pirsa: 19110070 Page 8/24

Pirsa: 19110070 Page 9/24

Pirsa: 19110070 Page 10/24

χ^2 for model

 χ^2 probability distribution for histories of dark energy

$$p(\chi^2(\tilde{\Omega}_{de})) = \in D\tilde{\Omega}_{de} \exp\left(-\frac{\chi^2(\tilde{\Omega}_{de})}{2}\right) \delta(\chi^2(\tilde{\Omega}_{de}) - \chi^2_{red}(\tilde{\Omega}_{de}))$$

where

$$\chi^2_{red} = \frac{\chi^2}{\sum_{\omega} \# \omega}$$
 and $\chi^2 = \sum_{\omega} \frac{\left| \tilde{\Omega}_{de}(\omega) \right|^2}{\left\langle \left| \tilde{\Omega}_{de}(\omega) \right|^2 \right\rangle}$

Pirsa: 19110070 Page 12/24

Baryon Acoustic Oscillations

- Baryon acoustic oscillations (BAO) matter clustering provides a standard ruler for length scales in cosmology.
- BAO can be used to measure the acceleration of the expansion of the universe (or dark energy) by comparing the sound horizon at recombination with the sound horizon, r_d , at different time.

イロンイタンイミンイミン を かなく

Nosiphiwo Zwane

Everpresent A in CosmoMC

Pirsa: 19110070 Page 13/24

Baryon Acoustic Oscillations

- Baryon acoustic oscillations (BAO) matter clustering provides a standard ruler for length scales in cosmology.
- BAO can be used to measure the acceleration of the expansion of the universe (or dark energy) by comparing the sound horizon at recombination with the sound horizon, r_d, at different time.

Pirsa: 19110070 Page 14/24

Baryon Acoustic Oscillations (BAO)

• A number of other models that Aubourg et al. examined fail to fit BAO 2 data, unless one assumes that $\Omega_{DE} < 0$ at $z \sim 2-3$.

Pirsa: 19110070 Page 15/24

Pirsa: 19110070 Page 16/24

• There are histories of dark energy that are a good fit to the CMB, these histories have $\Omega_{de}\approx 0.7$ at $z\approx 0$ and $\Omega_{de}\approx 0$ at $z\approx 1000$. • There are histories of dark energy that are a good fit to the BAO. • If Λ really is fluctuating and "everpresent", should become more clearly evident as observations accumulate for high

redshift.

Pirsa: 19110070 Page 17/24

CosmoMC

The Value of Hubble Constant today H_0

- Planck Collaboration, arXiv:1502.0158.

- A. G. Riess et al., arXiv:1604.0142.

mulations vs Observations

Pirsa: 19110070 Page 18/24

Pirsa: 19110070 Page 19/24

Pirsa: 19110070 Page 20/24

Pirsa: 19110070 Page 21/24

Pirsa: 19110070 Page 22/24

Pirsa: 19110070 Page 23/24

Pirsa: 19110070 Page 24/24