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Free (gaussian) scalar field theory on a causal set.

The Sorkin-Johnston vacuum state.

Entanglement entropy from spacetime two-point correlation
function.

D'Alembertian operator on a causal set.

Causal set action.
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Quantum Field Theory

A quantum field theory is typically fully determined by the set of
its n-point functions.

(0]p(x1)¢(x2)(0), ..., (O[¢(x1)b(x2)...¢(xn)|0) (1)

If we consider a gaussian (for example scalar) field theory, then we
only need to know

W = (0|¢(x1)9(x2)[0) (2)

to fully determine the theory. All the higher n-point functions can
be deduced from the 2-point function in this case.
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Finding W in the Causal Set

The covariant commutation relations are given by the Peierls
bracket

[6(x), $(x")] = iA(x,x'), (3)

where the Pauli-Jordan function is
iA(x,x') = i(Gr(x,x") — Ga(x,x")), (4)

with Gg a(x, x’) being
the retarded and advanced Green functions.

Ker(() — m?) = Im(A). (5)

Thus the eigenvectors in the image of iA span the full solution
space of the KG operator.
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The Sorkin-Johnston Vacuum !

IA is a self-adjoint operator on a bounded region of spacetime.

Write iA(x, x) in terms of its positive (ux) and negative (vy)
eigenfunctions:

A x) =Y [Akuk(x)u}:(x') - Akvk(x)vl(x')] . (6)

k

Restrict to positive eigenspace to get the Wightman or two-point
function in the SJ vacuum:

Wsy(x,x') = Pos(ild) = »  Aeur(x)ul(x'). (7)
k

'R D Sorkin, J. Phys. Conf. Ser. 306 (2011) 012017.
S P Johnston (2010) arXiv:1010.5514.
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Some Properties of the SJ Vacuum

Uses the entire spacetime volume.
An observer independent vacuum which is unique.

In static spacetimes, the SJ state is the same one that is
picked out by the timelike and hypersurface-orthogonal Killing
vector.

While not necessarily Hadamard itself, a family of Hadamard
states can be constructed from it.

Is a pure state for the spacetime definition of EE (while its
restriction to a smaller subregion is not pure).
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SJ State and Cosmology

e FRW: Results suggesting there are correlations on
super-horizon scales. N Afshordi, S Aslanbeigi, R D Sorkin,
JHEP 08 (2012) 137.

e de Sitter: Sometimes get a—vacua. S Aslanbeigi, M Buck,
JHEP 08 (2013) 039.

e de Sitter: New de Sitter invariant vacuum in 4d. S Surya,
Nomaan X, and YKY, JHEP 1907 (2019) 009.

Can we learn something about the early universe from the SJ
vacuum?
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de Sitter invariant a-Vacua

«-vacua are a two-real-parameter family of dS invariant vacua.

« = 0 is special (Hadamard) and is called the Euclidean or

Bunch-Davies vacuum?.

The Wightman function for the Euclidean vacuum in d is given by

WE(X,)/) = (I’[h+]l’[h ] »Fy (h+a h_, %I; 1+Z(x,y)+i;sign(x —y ))

am)d/202r (9]
where Z(x,y) = nagXA(x)XB(y), hy = 451 +v,

v = 8\/("'2}1)2 — m?, and >F; is a hypergeometric function.

It is usually said that there is no known de Sitter invariant Fock
vacuum for the massless, minimally coupled theory.

2Also known by other names.
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Results: 2d massless & massive, ds? = _13 (-d72 +d03_,)

Figure: Upper: massless scatter plot with mean values in red. Lower: m=2.3
scatter plot with Wg in red. Left: causal. Right: spacelike. T = T,.« = 1.5
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Results: 4d massless & massive

m m=0
m=0.3
1 m=05
m m=07
m m=09
m m=11
1 m=13

Figure: Upper: m=1.41 mean values with Wg in blue. Lower: T=1.42
mean values. Left: causal. Right: spacelike
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Entanglement Entropy

In conventional treatments, entropy is defined as
S=Trpnp! (8)

where p is a density matrix on a spatial hypersurface .
If 2 is divided into complementary subregions A and B, then the
reduced density matrix for subregion A is

pa = Trgp
and its entanglement entropy with region B is

Sa=—Trpalnpy .
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Entanglement Entropy in terms of W3

Express S directly in terms of the spacetime correlation function.

The entropy can be expressed as a sum over the solutions A of the
generalized eigenvalue problem

Wv=i\Av, (Av # 0) (11)

S=) Aln|x. (12)
A

W and /A are the Wightman and Pauli-Jordan matrices.

3R. D. Sorkin, arXiv:1205.2953
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Nested Diamond Setup for Causal Set EE

A(X, X') = Gr(X, X")—Gr(X", X)

For m = 0, we have that
Gr = 3C, where C is the causal

1, ifx=<y.

0, otherwise
For W, we choose Ws.

matrix: Gy, =

W] R s s
1.0

N Afshordi, M Buck, F Dowker, D Rideout, R D Sorkin,
YKY, JHEP10(2012)08, arXiv:1207.7101.
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1 + 1d Causal Set Results: Area Law*

The EE fits S = bIn(v/Ng/47) + ¢ with b = 0.346 4 0.028 and
c = 1.883 £+ 0.035. This is the usual result.

Figure: S vs. v/Ny/4m. ¢/L = 1/2 in this example.

“R D Sorkin, YKY, CQG 35 074004 (2018).
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EE of de Sitter Horizons in Causal Sets®

Currently investigating EE of horizons in dS.

Figure: Horizons in 2d dS causal sets in conformal coordinates.

Preliminary results show that the spacetime entropy yields an area
law in this case as well.

S Surya, NX, YKY.
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Entropy Formula has Broad Applications

The formulae

Wv=i\Av, (Av # 0) (13)

S=> Aln|). (14)
A

can be generally applied to any region(s) of spacetime within
another.

For example we can consider entropy of coarse graining, or nested
regions whose Cauchy surfaces are not subsets of each other.

They also turns out to approximately hold in some non-gaussian

theories®.

%Y Chen, R Kunjwal, H Moradi, YKY, and M Zilh3o, in preparation.
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EE as a Probe of Inhomogeneities?

Can we use entanglement entropy to model inhomogeneities?
This would also allow us to study it quantum mechanically.

Results on the SJ vacuum in FRW hinted at correlations on
superhorizon scales’. These appeared without the help of inflation.
Since EE measures information loss due to loss of correlation
information (across inaccessible regions such as horizons), these
structures may be quantifiable with EE.

"N Afshordi, S Aslanbeigi, R D Sorkin, JHEP 08 (2012) 137
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Causal Set d'Alembertian

In QFT one usually inverts the d'Alembertian to obtain Green
functions. Since we have independently defined Green functions
(as reviewed in the SJ discussion) we can reverse the process to
obtain a d'Alembertian.

Since G,(,ftd) ~ C and G,(:td) ~ /p L, we need to either set the
diagonal to nonzero values or consider the symmetric part. This
gives good agreement with [] but its frame-independence is not
manifest. Also we do not know G, generally.

This led to a search for a more direct definition of [J that is more
intrinsic to the causal set.
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Causal Set 0=Bin1+ 1d

If we fix an element x € C, at which we would like to know the
value of (¢, this will be®:

Bo(x) = 5 | 000+ [ 223+ 3 o],

yeL y€ly y€lj

where ¢ is the discreteness scale. More explicitly as a matrix, B is

-1/2,
—Byxy =<¢1,-2,1, for n(x,y) =0,1,2, respectively, for x # y
0

for x =y

otherwise

where n(x, y) is the number of elements causally between y and x.
Given B we can also go backwards and reconstruct? C!
®R D Sorkin, Does Locality Fail at Intermediate Length-Scales? In

Approaches to QG, ed by D Oriti, Cambridge University Press (2009) 2643.
YKY, A Kempf, CQG 34 094001, 2017
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Benincasa-Dowker Causal Set Action

Since fljin?) B ¢o(x) = (O - fR( )) #(x), this led to a proposed
>

action functional for causal sets.

More precisely, we get the action S[C] by acting with B on the
constant —h¢? times another order one constant (related to units)
and summing over the elements of C. This gives!!

fs (2] = N — 2Ny + 4N, — 2N;3 (16)

and

—5 (4d)[C] = N — Ny + 9N, — 16N3 + 8N, (17)

where N is the number of causal set elements and N, is the
number of (i + 1) element order intervals.

D M T Benincasa, F Dowker, PRL 104 181301, (2010).
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Non-local Causal Set d'Alembertians

Even though the average over sprinklings agrees well with the
continuum expressions, any particular realization of it on a single
sprinkling will not. There are fluctuations, and they grow with N.

Can damp out fluctuations by introducing an intermediate
nonlocality scale { < ¢) < Lir

Bo(x) — Brp(x) = 4 (czﬁ(x) + EZ f(n(x,y),e))

N

y=<Xx

where € = (£/£,)*, and we effectively smear out the expressions
above over the new length scale /.
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Nonlocal Causal Set Action

Once again I|m B o(x) = (O — —R( )) ¢(x), when ¢ varies slowly

over scales ﬂk and the radius of curvature r> {y.

In this case the fluctuations are tamed, by the law of large
numbers. In an interval in IM*#, the fluctuations were found!? to

die out as 1/v/N.

We now have a d'Alembertian operator (and action) defined in an
intrinsic way with respect to a causal set and therefore explicitly
Lorentz-invariant. It yields the expected answer not only on
average but with high probability in each realization.

2D M T Benincasa, F Dowker, PRL 104 181301, (2010).
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Could there be a A term in the fluctuations of B?

The cosmological constant enters the gravitational action as

S¢ = / [m;G(R _ 2/\)] J=gd*x. (18)

After we remove the R term from the causal set action, could the
remaining residue be the A term?!

We know that B fluctuates. Perhaps the fluctuations will survive in
S and be another confirmation of Everpresent A.

It would be interesting to investigate this.

Page 29/31



Some other remarks on B

e The expressions for B have been generalized to IM? (F
Dowker, L Glaser, 2013, CQG 30 195016; S Aslanbeigi, M
Saravani, R D Sorkin, JHEP 1406 2014 024).

e Phenomenological studies of the nonlocality scale in B, (A
Belenchia, arXiv:1512.08485v1.)

e Boundary terms for the causal set action (M Buck, F Dowker,
| Jubb, S Surya, CQG 32 2015 20, 205004).
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Summary and Future Directions

From scalar field theory on a causal set, we have learned
lessons about nonlocality, using retarded operators, and how
the spacetime volume enters the physics.

Can we use entanglement entropy to learn about and model
cosmological inhomogeneities?

Could there be another signature of Everpresent A in the
fluctuations of the causal set action? This may explain both
why the mean value is zero and why it takes its small value.

Many more interesting problems to explore in cosmology,
involving the causal set action, SJ vacuum, and EE.
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