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QOutline

 J

The Causal Structure Poset and the HKMM theorem

m
et

 J

The Causal Set Hypothesis : Spacetime — locally finite poset

» The Continuum Approximation or Causal Set Kinematics
» The Quantum Dynamics of Causal Sets
» Causal Set Phenomenology: A, Swerves, Non-local field theory, etc
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The causal structure poset (M, <)

» (M, g) has local lightcones = Local Causality:
e < causality rglation (causal, Ji(x))
e K chronology relation (timelike, Ii(x))

e —»: horismos relation (null, J*(x)\/*(x))

Past
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The causal structure poset (M, <)

» (M, g) has local lightcones = Local Causality:

e < causality r‘gliation (causal, ‘,fi"(x))

o <« chronology relation (timelike, /% (x))

e —: horismos relation (null, Ji{x)\fi(x))
» In any causal spacetime (M, <) is a poset.

e M: the set of events.

e < : causal relation

P Acyclic: x < yandy < x = x =y

P Transitive, x < yandy <z = x <z
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HOW pl’lm |tlve IS (M, “-}.) ? = Zeeman, Finkelstein, Penrose, Kronheimer, Hawking, Geroch, Ellis, Malament, Myrheim etc..

» Causal Structure gemains invariant under conformal rescaling: g, = Q%g.p
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HOW pl’lm |tlve IS (M, “-}.) ? = Zeeman, Finkelstein, Penrose, Kronheimer, Hawking, Geroch, Ellis, Malament, Myrheim etc..

» Causal Structure remains invariant under conformal rescaling: 2., = Q%g.s

» Only spaces with signature (—,+,+,...,+) can have a causal structure poset

o™
~

‘ Timelike

Spacelike

Timelike
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Spacetime geometry from (M, <)

. . M . . . . e .
» For Minkowski spacetime, group of chronological automorphisms is isomorphic to
the group of inhomogeneous Lorentz transformations and dilations.
Zeeman, 1964

» The Hawking-King-McCarthy-Malament Theorem:
Let f:(My,g1) — (M2, g>) be a causal bijection between two future and past
distinguishing spacetimes, i.e., x1 <1 yv1 <> f(x1) <2 f(x2). Then f is a smooth

conformal isometry: f and f —1 are smooth and f.g, = 2°g>.

5. W. Hawking, A.R. King, P.J. McCarthy (1976); D. Malament (1977)
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Order is most of geometry

» (M, <) contains all but one of the n(n + 1)/2 independent components of (M, g)
» “Causal structure is 9/10*"" of the spacetime geometry.” Finkelstoin (1969)

» Remaining 1/10*" is the volume element

e = Q" x gdx! AL A dx”

Spacetime geometry = Causal Structure + Volume element
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The Ca USE]I Set HypOthESiS Myrheim (1978), L.Bombelli, J.Lee, D. Meyer and R. Sorkin, (1987)

» The Causal Structure Poset: (M, <) C (M, g)

» Spacetime Discreteness: N ~ V/V,
Finite spacetime volume contains finite number of spacetime “atoms”

y

=74
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Order is most of geometry

» (M, <) contains all but one of the n(n + 1)/2 independent components of (M, g)
» “Causal structure is 9/10'" of the spacetime geometry.” Finkelstoin (1969)

» Remaining 1/10*" is the volume element

e = Q" x Jgdx! AL A dx”

Spacetime geometry = Causal Structure + Volume element
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The Ca USE]I Set HypOthESiS Myrheim (1978), L.Bombelli, J.Lee, D. Meyer and R. Sorkin, (1987)

» The Causal Structure Poset: (M, <) C (M, g) Order

» Spacetime Discreteness: N ~ V/V, Number
Finite spacetime volume contains finite number of spacetime “atoms”

y

=74

Order 4+ Number ~ Spacetime Geometry
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The Ca USE]I Set HypOthESiS Myrheim (1978), L.Bombelli, J.Lee, D. Meyer and R. Sorkin, (1987)

The underlying structure of spacetime is a causal set or locally finite poset (C, <)

» Acyclicc x <yandy <x =>x =1y
» Transitive: x <yandy <z = x <2z

» Locally finite: |Fut(x) N Past(y)| < oo
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The Continuum Approximation

Order + Number ~ Spacetime Geometry

» Causal Order <> Order

» Number < Volume
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The Continuum Approximation

Order + Number ~ Spacetime Geometry

» Causal Order <> Order
» Number < Volume

» Random Lattice via a Poisson process: Py(n) = "1! exp PV(pV)", (n) = pV

Pirsa: 19110064 Page 15/39



Riemann's dilemma

» A discrete manifold has finite properties, whereas a continuous manifold does not.
Natural quantities are to be finite. The world must be discrete.

» A discrete manifold possesses natural internal metrical structure, whereas a
continuous manifold must have its metrical structure imposed from without.
Natural law is to be unified. The world must be discrete.

» A continuous manifold has continuous symmetries, whereas a discrete manifold
does not. Nature possesses continuous symmetries. The world must be
continuous.
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Does C ~ M" violate Lorentz invariance?
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Discreteness WithOUt Lorentz ViOIE]tiOI'] ~ L.Bombelli, J.Henson, R, Sorkin 2009, Dowker and Sorkin, 2019

» Space of all sprinklings into M" : Q

» Set of all timelike directions: unit hyperboloid H C M"
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DiSCI’EtEﬂESS WithOUt Lorentz ViOIE]tiOI'] ~ L.Bomballi, J.Henson, R, Sorkin 2009, Dowker and Sorkin, 2019

» Space of all sprinklings into M" : Q

» Set of all timelike directions: unit hyperboloid H C M"

» Is there a way to assign a direction D : 2 — H consistently?
» Consistency => under a boost A, D oA = Ao D (equivariance)

» Poisson process gives a measure j. on €2 which is volume preserving and hence
Lorentz invariant. : gt = pro A
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DiSCI’EtEﬂESS WithOUt Lorentz ViOIE]tiOI'] ~ L.Bombelli, J.Henson, R, Sorkin 2009, Dowker and Sorkin, 2019

Theorem: There is no measurable map D : Q — H which is equivariant, i.e.,
DoA=AoD.

Proof: If such a map existed, then ip = 10 D! is a Lorentz invariant probability
measure on H which is not possible since H is non-compact.
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Discreteness + Lorentz invariance = Non-locality

» A causal set need not be a fixed valency graph.
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Discreteness + Lorentz invariance = Non-locality

» A causal set need not be a fixed valency graph.

e Other discretisations lead to finite/fixed valency graphs

e In C ~ (M, g), number of nearest neighbours is not fixed (— oo in M")
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Discreteness + Lorentz invariance = Non-locality

» A causal set need not be a fixed valency graph.

e Other discretisations lead to finite/fixed valency graphs

e In C ~ (M, g), number of nearest neighbours is not fixed (— oo in M")
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Discreteness + Lorentz invariance = Non-locality

» A causal set need not be a fixed valency graph.

» No Cauchy evolution

e ( does not admit a natural (d — 1) + 1 split into space and time.
e Initial value formulation can only be emergent: no fundamental “local” dynamics.

e Sum over Histories formulation more suitable than Hamiltonian formulation.
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The Fundamental Conjecture of CST

Order + Number ~ Spacetime Geometry

» C~ (M, g1), C~ (M, g) = (M,g1) ~ (M, g2).
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The Fundamental Conjecture of CST

Order + Number ~ Spacetime Geometry

» C~ (M, g¢1), C~ (M, g) = (M,g1) ~ (M, g2).

ftee
tor
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Geometric Reconstruction/Covariant Observables

When does a causal set look like a spacetime?

Discrete Order ~ Geometry
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Geometric Reconstruction/Covariant Observables

» Dimension Estimators
» Timelike Distance
» Spatial Homology

» Spatial and Spacelike Distance

» D’Alembertian

» Benincasa-Dowker Action
» GHY terms in the Action
» Recovering Locality

» Scalar Field Greens functions

SS, Living Reviews in

Myrheim, Myer
~Brightwell & Gregory
Major, Rideout & Surya

—Rideout & Wallden

~Eichhorn, Mizera & Surya, Eichhorn, Surya & Versteegen
Sorkin, Henson, Benincasa & Dowker, Dowker & Glaser
—Benincasa & Dowker, Dowker & Glaser

Buck, Dowker, Jubb & Surya

~Glaser & Surya

Johnston, Dowker, Surya & Nomaan X

Relativity (2019)
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The Continuum Approximation

Order + Number ~ Spacetime Geometry

» Causal Order <> Order
» Number & Volume

» Random Lattice via a Poisson process: Py(n) = "1! exp PV(pV)", (n) = pV
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The CST Postulate

» Spacetime is replaced by locally finite posets or causal sets

Z = / Dgexp[iS[g]/h] — Z= Z 1(C) (1)

ce

. . . 2
» What does a typical causal set in 2, look like? [Q2,] ~ 2" /4
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Kleitman and Rothschild, Trans AMS, 1975

» 41(C) is a quantum measure. - R. Sorkin 2004
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Two Approaches to Dynamics

» Sequential Growth

e Causality

e Covariance or Label Invariance

"Bell causality” or spectator independence

Markovian evolution
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Two Approaches to Dynamics

» Sequential Growth

» Continuum inspired dynamics: Z = Z exp(iS[c|/h)
Cceq

N-—-2
e Benincasa Dowker Action: } 5. (c) = 4« (N —2¢ X N, f(n, r))
) n=0
—Benincasa and Dowker, Dowker and Glaser

P Weighted sum over number of neighbour pairs, next to neighbour pairs, etc.

g 2
> Mesoscale [, >> fp = (:i) € (0, 1],
f(ne) =(1—¢€)" —2en(l—¢€)" 1+ Le2n(n—1)(1 — )" 2
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Where are we?

» Quantum Sequential Growth models: Does the quantum measure exist?

Dowker, Johnston and Surya 2010, Sorkin 2011, Surya and Zalel, in preparation

» Stationary phase approximations for Z = 5" ~exp(i5(C)/h) Carlip and Loomis, 2017

» Analytic continuation Z = 3" - exp(i3S5(C)/h) = Z = > - exp(—B3S(C)/h)

=Surya 2011, Glaser and Surya 2015, Glaser, O'Connor and Surya, 2017, Cunningham and Surya, 2019
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Where are we?

» Observables in the theory are order invariants (includes all the geometric
invariants like dimension, action, etc.)

» But..

e |f the path is clear, the technical hurdles are fairly great (calculability in sequential
growth models)

o If there is calculability, there is conceptual difficulty (analytic continuation)

Ultimately quantum gravity needs a quantum theory of closed systems

=Sorkin, 2007 and others..
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What is Causal Set Phenomenology?

» Does the continuum emerge from causal set quantum gravity 77

» The continuum approximation itself is distinct and “quantum”

» Characteristic features: Discreteness, Lorentz invariance, non-locality..

Pirsa: 19110064 Page 37/39



Examples of Causal Set Phenomenology

» Sorkin's 1987 prediction for AA

Sorkin (1987), Sorkin (1997), Ahmed, Dodelson, Greene, Sorkin (2004), ..

» Swerves

Dowker, Henson and Serkin (2003), Dowker, Philpott and Sorkin (2009), Mattingly and Kaloper(2006)

e Particles hopping on the causal set
e No straight lines: particles must "swerve just a little"
e Momentum Diffusion in M* x H?:

2 p(x,pY) = KV2p(x p”) — Lyl p(x", pY)
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Causal Set Phenomenology is rich — we are just seeing the tip of the iceberg..
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