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Abstract: Connections between 2D gapped quantum phases and the anyon fusion theory have been proven in various ways under different settings.
In this work, we introduce a new framework connecting them by only assuming a conjectured form of entanglement area law for 2D gapped
systems. We show that one can systematically define topological charges and fusion rules from the arealaw alone,& nbsp;in awell-defined way. We
then derive the fusion rules of charges satisfy all the axioms required in the algebraic theory of anyons. Moreover, even though we make no
assumption about the exact value of the constant sub-leading term of the entanglement entropy, this term is shown to be equal to the logarithm of the
total quantum dimension of the anyon theory we defined.& nbsp;
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Gapped quantum systems

> Gapped 2D local Hamiltonian H:

H:—Zh’
J

Pirsa: 19110061 Page 3/34



Gapped quantum systems

> Gapped 2D local Hamiltonian H:

H=""Zh, —E0>A>O | M_(_ =)
j "{\;_u;_;_@__f_

"._._" "\._—.‘-_\—v——

for any system size.

Gapped q. phases = Equivalence classes of ground states

H[wy) = ESO s, Ha o) = Eg” libz): ground states

IT,[)1) e ]¢2> E,
H(0) =H Bt

@aH(S‘)="Zhj(S) {H(1)=H; Ep e S
; B

PR————
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Classifying gapped phases of matter
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From
Xiao-Gang Wen, ‘ 3
“Choreographed entanglement dances: Topological states of quantum matter”,

Science, 363, 6429, (2019).
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Classifying gapped phases of matter

P

» 1D gapped quantum system:
Completely classified by the MPS formalism and beyond.
[Chen, et.al "07] [Schuch, et.al ‘11] [Ogata, ‘19]...

Symmetry-breaking (SB) + Symmetry protected topological (SPT) order
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Classifying gapped phases of matter

» 1D gapped quantum system:
Completely classified by the MPS formalism and beyond.
[Chen, et.al '07] [Schuch, et.al ‘11] [Ogata, ‘19]...

Symmetry-breaking (SB) + Symmetry protected topological (SPT) order
Group theory

> 2D gapped quantum system:

Rigorous classification has not been established yet.

Widely accepted theory: SB+SPT+topological order
Category theory
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Classifying gapped phases of matter

» 1D gapped quantum system:

Completely classified by the MPS formalism and beyond.

[Chen, et.al "07] [Schuch, et.al ‘11] [Ogata, ‘19]...
(SPT) order

Symmetry-breaking (SB) + Symmetry protected topological
Group theory

v 1w TP e o | PR Pt = = T
» 2L gapped guantum system:

Rigorous classification has not be€

Widely accepted theory: SB+3PT+topological order
Category theory

established

| system:

cube models,...)

3D gapped guantum

+fraction phases (Haah code, X-

Page 8/34
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Topologically ordered phases

Non-trivial gapped g. phases with the following properties:
v No local order parameter [~
v Topology-dependent degeneracy of ground states * L

N
v Anyonic excitations m

v/ Gapless boundary (sometimes) U

7 L
gwell-explained by Topological Quantum Field Theory (TQFT)

gepralc 1

— Topological orders aré distinguished by alc

Bl il me tamemr - ~ 1
vioguiarn 2ol LAl

i s iy iy a”
How do we prove it for generic gapped systems
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Question

Microscopic descriptions Anyon theory

H, [ihgs), - DhL B e axb=) Nipe
C

» a b € b

H—H nt T (. A Pailk it
J*f"“*-r:t_l_&._ BN AN
[ J.> ‘ i) [ -'>“rr‘ )
I—‘t““"‘L‘?‘ﬁ“ i | i ‘;
QM Category theory

(toric code, quantum double model, Levin;Wén rhodel,“FQHE,...)

et [ ”;r | o

[Sahmoélu et. al .‘14] MPO |nject1ve PEPS description

ach (relativistic & continuum)

[Haag 96] algebralc QFT appro
lattice w/Haag duality & splitting property

[Naaijkens, Fledler ‘45]: infinite spin
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Area law

Gapped ground states are believed to obey an area law

Entanglement entropy

S(X), = —Trpxlogzpx DD

N
——¢ =% —4

Area law (weak form)
S(X), < 0(lox]) elejalalulsislssl]

% Proven for 1D gapped systems [Hastings, ‘07].

> Complete proof has not yet been obtained for 2D or higher dimensions.

Observations: Arealawin 2D (strong form)

S, — aloX| —y +o(1)
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Our work

Quantum information theoretical approach

Anyon models

Area law of entanglement

This talk
£ =1{1 ab,c, <}
a X b = Z N(fb G
c
On-going

without Hamiltonian! ‘

Intuitively clear, simple assumption without any Hamiltonian.
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Anyon theory

Charges, fusion rules and F and R-matrices specify an anyon theory.

o —{l a b3

'l‘::' LES BED I 0 LA S L NC -
Possible total charges of two charges aXxb Z ab
c

. 1 1
iV ol 1
cf.)spin =X 3 0+

S S ™ 2 > - ) d 7 il : A /b
| Sﬂpéci.f'y braiding statistics \S/= Z(F&:)}Y/ g i Rﬁb\(
/
d ¢ -

d
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Example: Toric code

H==> A=) B,  [A,4]=[8,B8,]=[4n5,] =0

VE+ PED

AL’Iw) o hb), Vv
Bph.b) = [), Vp

Charge set: L = {1,e,m,é€}
Fusion rules:

lxXxax==x rxzrz=1 (z=1em,e

e Xm=¢€ m X € =¢e exXe=m

Pirsa: 19110061
Page 14/34



Our axioms (precise ver.)

Assumption: 3a reference state p satisfying the two axioms

Axiom AOQD: Axiom A1:
=4, D D

S(A|B), +S(A), =0 S(A|B), + S(AIC), =0

#:

— pap = Pa ® Pp — papps Pacp are 4. Markov chains

> Follows from the area law: S(A), = aldAl —v

» One could consider = 0 instead of the exact conditions

. Can be extended to larger regions by iterations. .. ¢ 415y == S(4B) — S(B)
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Information convex

A key concept to define the anyon theory without Hamiltonian
E(Q) = {O‘Q i l op = Pp V b: ball} locally indistinguishable from p
Information convex [Shi, 18]:

Z(Q) = {O'Q — TI'Q+\QO'Q+ | oq, = f(ﬂ)}

> T(Q) is a convex set.

» Hamiltonian-free definition.

% IfQis a disc, then Z(Q) = {pa}-
Similar to the topological order condition |
[Michalakis, Zwolak, i3] \

> Similar concepts are in [Haah,'1'6],[KK,
Naaijkens'18] (operator—algebram).
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Isomorphism theorem

Ll ol s e Mo i 11 gt o | 1 ovuife 1L T TS \ (
How does the structure of £(() depends on {2

‘Theorem 1 i

If 00 and Q! are connected by local deformations {3,
there is a bijective CPTP-map

fb{_qr]: Q% - {0k

% The isomorphism preserves the entropy difference QO
S(o) — S(w) = S(®(0) — S(®(w))- @

> For annuli, ®(or} = P (g5 if tWO paths {Q°} ,{Q"}

connected smoothly.
_, They are possibly different on e.g. a torus.

d
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A key lemma

Merging Lemma [KK, Furrer, Murao ‘16]:
Consider a set of states § = {pzc} and og¢p such that pgc = Ipc and

I(A:C|B), = I(B:D|C)s = 0,Vp E 5. (*)
Then, there exists a unique set of ‘merged’ states inen

} which satisfy

oL ol
o @doc — PAsc’ Tscp = 9BCD:

2 1@-DIBC): = ©:

3 S(thsep) =S (T/[;BCD) = S(pasc) — S(Pasc)-

is the Petz recovery map [Petz, ‘03].

” TABCD — E¢icp (PABC) e

> A special version of Quantum Marginal Problem (in QMA [Liu, et. al '07)).
”~
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Proof sketch (Isomorphism theorem)

: ] :
:> @ The partial trace:Z(Q) — Z()
) ;: Oq € E(ﬂ)
ppcp: the reference state

A1 implies I(4: C|B)s = I(B:D|C), = 0.

@R — JTapcp J[TABC = OaBC
T =
B W Q Bcp = PBCD

4 — - = Typcp€ Z(QD)
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Charges / Superselection sectors

We define charges via the information convex on an annulus

If Q is an annulus, there is a finite set

of labels £ such that 0
(@) (@)
Oq = @ DaPa s Vagl€ 2 (@)

ael |
|
p& is independent of the choice of do. |

> Intuitively, each pg corresponds to the reduced state of an excited state

with a fixed charge pair.

1 r ik " R
> The reference state pq is an extreme point, the “vacuum’ po= Pa-

> Foreacha € £, we can show there is an anti-charge a € L.
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Proof sketch

Lemma:
Any extreme point o € Z() satisfies

9) I(L:R)s = 0.
R

Pick two extreme points gq, g € Z(Q).

By the isomorphism theorem,
>(Q) = Z(L) = Z(R)-

F(0q, 6o\< F (oL ® o, 0, ® Or) = F(oy,01) - F (0, 0r')

F(og,00) = FloL,0L) = F (0, 0r)
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Proof sketch

Lemma:
Any extreme point o € Z({) satisfies

() I(L:R), = 0.
R

Pick two extreme points dq, dq € Z(Q).

By the isomorphism theorem,
>(Q) = 3(L) = Z(R)-

F(0q,00\< F(oL ® 0g, 0, ® ) = F(oy,0L) - F(0g,0r")

F(og,00) = FloL,0r) = F(og,0r)

Lol o) —0ort | (O<E =)
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Fusion rules

To define fusion rules, we consider a 2-hole disk O = ABC
If Q is a 2-hole disk, then C
O = @ pabcas(,_“'b c), Yoo € Z(Q) A
ab,c
a&f‘b"'): (f,ﬂ‘l"b'c) = Pgys a,f,f_f""“) =g /
o_éa.b.c) e E‘ > 1 B
Now o' depends on op-
Theorem 3 i
{a!(l“"’")} ~ a state space on a finite Hilbert space Vs
= dimVg,

We define the fusion multiplicity by Ng,

aXb=ZN§bC

ceL
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Proof sketch

Pick an extreme point (¢ € {Géa‘b'c)}

Purify it @5 = [@)az

We merge all element in {a}f""c)} with @

=0

So= — the setiof merged states

. extreme points in Z(Q) — pure states

. Superpositions/mixtures in Sqz — elements in Z(Q)

ite-dimensional Hilbert space Vg,
Lo = S(175), the staleispace of a finite-dime <
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Axiomatic properties of fusion rules

In the anyon theory, the fusion multiplicities Ng, must satisfy
the following rules.

7. N&, = Nf,: commutativity of fusion rules
2. N&j = 8q,c: Vacuum

3. N}, = 8, 5: anticharge

4 NE, = N&;: charge-anticharge duality
GSNE NG = 5 N%NJC - associativity

BT A S e
<. in our definition satisfies all the properties.

Pirsa: 19110061 P 25/3
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Proof sketch

EX.) Ng1= 64
Consider a 2-hole disk with (1, a, ¢).

o$%9 € 3(Q)

One can merge the vacuum sector with a disk D.
Q= QICID)

O-f(ll'a'C): Pp 7 TQr

o

Tar € E(Q’)

Q' is an annulus and g, is i
a —sector.
Ta —ParnwCad
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Topological Entanglement Entropy [1/2]

The area law states that

S(A), = aldA| —v.

y: topological entanglement entropy
[Kitaev, Preskill, '06] [Levin, Wen ‘06]

What's the value of y?

Stopo = S(AB), + S(BO), +S(CA), = S(4), — S(B), —S(C), — S(4BO),

oo B

—

Stopo =Y Stopo
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Topological Entanglement Entropy [2/2]

rtitio LW partition .
" >

5 =
0

Stopo 0 Stopo = 2y
Quantum dimension: dq.d, = Z Nsndd, d, € Ryq
ceL
> For Levin-Wen models or TQFT, it was shown that
Vi IOgD‘ D= ,‘Zaeﬁdg s
Feoremiol L sl S
logD for KP partltlon Smpo — logD? for LW partition.

Skopo

B i
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Proof sketch: entropic contribution

2f (@) = S(p§) — S(pa)
Merging oty Pz = o @ @

Since ¢&*? is a quantum Markov state,

S(o%?) — S(oy) = 2f(a) +2f(b).

Also, c&%? has the maximum entropy in £(Y):
S(a@*?) = S(oy) = f(a) +f(b)
o 3,167°) ® ©
C

L, 2f@2f®) = Z NE,27©
g
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Proof sketch: topo. ent. Entropy (LW)

01, Pur :the reduced states of the reference state

Merging prr, Pur = Ta * P !
Actually, 7,z is the maximum entropy state in Z(Q).

e 0g = ®paps Voq € Z(Q)

- S(p§) — S(pa) = logda

el iy -—Z.szﬂ

. S(LMR)y = S(LM); + S(MR); = S(M)z 0 = LMR
L — s@)) - Slea)sloele
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Open question 1: R- and F-matrices

g Ra Y DRI !

......... e vus
.

Problem: hard to see U(1) factors in the information convex (mixed states)

[Kawagoe Levin ‘19]: A way to extract these matrices unambiguously.

”~y

[Shi, 19]: Extend our methods to show unitarity of S-matrix.
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Open question 2: stability problem

To claim we derive properties of a phase, they should be the same for any
two systems in the same phase.

Axiom AD: D Axiom A1: D

S(A|B), +S(A), =0 S(A|B), + S(AIC), =0

!_[:

———

some cases (even approximately)!

Problem: A1 is not true |n

ical entanglement entroj

States with spurious topolog
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Open question 2: stability problem

Spurious topological entanglement entropy

[Bravyi ‘08]: There exists a ground state which is not in any
topologically ordered phase (D = 1), and has 1(A:C|B), > 0 for

particular ABC.

AL KL NS Gt W ARl

1D cluster state embedded in 2D lattice R EDDCDEDe:

D 7., x Z, SPT Phase A7 ) DDINE
I TS T T GO
[William, “18]: homogeneous 2D model . ‘/B\\ T
% Known as a ground state in Plikem=amemam= e

I LI I T i
] i 11 Gl s e | | | LGl G J b Y i L

> Known as a ground state in b _ a8 [ 8%
‘™ w7 @PT Phase il

> [KK, Brandao, in preparation]: Stopo * 2l0gD

There is a model without such .
<PT but has spurious contribution

*SPT phase: nontrivial under a symmetry constraint (trivial if we ignore symmetry)
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Summary

a part of

N

We derive 'the anyon theory from the area law (axioms A0, A1).

. Charges and fusion rules are defined via the structures of the information
convex for various regions.

- \We proved these concepts satisfy necessarily requirements.
. \We show that the sub-leading term of the area law must be logD.
Next step: Defining R and F matrices in a consistent way.

Chall .- Show the stability by e.g. weakening Axiom A1 to include
systems with spurious topo. EE.

Thank you!
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