Title: Binary black hole simulations: from supercomputers to your laptop
Speakers: Vijay Varma
Series: Strong Gravity
Date: November 07, 2019-1:00 PM
URL: http://pirsa.org/19110055
Abstract: Simulations that numerically solve Einstein's equations are the only means to accurately predict the outcome of the merger of two black holes. The most important outputs from these simulations are the gravitational waveforms, and the mass and spin of the final black hole formed after the merger. The waveforms are used in extracting astrophysical information from detections, while the final mass and spin are used in testing general relativity. Unfortunately, these simulations are too expensive for direct use in data analysis; each simulation can take a month on a supercomputer. Surrogate modeling is a data-driven approach to modeling, that uses machine learning like techniques to interpolate between hundreds of existing simulations. In this talk, I will discuss some recent developments in surrogate modeling, including a new 7 -dimensional model that fully captures the effects of precession; the wobbling of the orbit caused when the black holesâ ϵ^{TM} spin axes arenấ $\epsilon^{\mathrm{TM} t}$ perpendicular to the plane of the orbit. This model reproduces the waveform as well as the final black hole's mass and spin as accurately as the simulations themselves, while taking only a fraction of a second to evaluate on a laptop.

Entanglement and Extended Conformal field theory

Fudan University

Perimeter Institute

Based on ongoing work with Janet Hung and hep-th 1811.10785 with William Donnelly

Binary black hole simulations: from supercomputers to your laptop

Vijay Varma

California Institute of Technology

Perimeter Institute
 Nov 07, 2019

Binary black hole simulations

Binary black hole simulations

Binary black hole simulations

Binary black hole simulations

Credit: SXS/LIGO/R.Hurt and T. Pyle

Binary black hole simulations

Credit: SXS/LIGO/R.Hurt and T. Pyle

Binary black holes

Stages of a binary black hole

Numerical Relativity (NR) can be hard!

Numerical Simulation of Orbiting Black Holes

Bernd Brügmann, Wolfgang Tichy, and Nina Jansen
Center for Gravitational Physics and Geometry and Center for Gravitational Wave Physics, Penn State University, University Park, Pennsylvania 16802, USA
(Received 26 December 2003; published 24 May 2004)
We present numerical simulations of binary black hole systems which for the first time last for about one orbital period for close but still separate black holes as indicated by the absence of a common apparent horizon. An important part of the method is the construction of comoving coordinates, in which both the angular and the radial motion are minimized through a dynamically adjusted shift condition. We use fixed mesh refinement for computational efficiency.

PACS numbers: $04.25 . \mathrm{Dm}, 04.30 . \mathrm{Db}, 95.30 . \mathrm{Sf}$

NR simulations today

2,018 simulations of binary black holes!

- non-precessing $\chi_{1 x}=\chi_{1 y}=\chi_{2 x}=\chi_{2 y}=0$
- precessing

SXS Collaboration, arXiv:1904.04831

Numerical Relativity

Gravitational waveform
Final BH properties

Infer source properties
Test general relativity

Phenomenological waveform models

- Two main approaches: IMRPhenom and EOB.
- Come up with ansatz with some free parameters.
- Calibrate to NR to fix free parameters.

$$
\begin{aligned}
\phi_{\mathrm{TF} 2}= & 2 \pi f t_{c}-\varphi_{c}-\pi / 4 \\
& \quad+\frac{3}{128 \eta}(\pi f M)^{-5 / 3} \sum_{i=0}^{7} \varphi_{i}(\Xi)(\pi f M)^{i / 3} \\
\phi_{\mathrm{Ins}}= & \phi_{\mathrm{TF} 2}(M f ; \Xi) \\
+ & \frac{1}{\eta}\left(\sigma_{0}+\sigma_{1} f+\frac{3}{4} \sigma_{2} f^{4 / 3}+\frac{3}{5} \sigma_{3} f^{5 / 3}+\frac{1}{2} \sigma_{4} f^{2}\right)
\end{aligned}
$$

Surrogate models: A data driven approach

Surrogate modeling: 1d example

Reduced basis

$$
h(q, t)=\sum_{i=1}^{n} c_{i}(q) e_{i}(t)
$$

Credit: Chad Galley

Reduced basis

Empirical interpolation

$$
A(q, t)=\sum_{i=1}^{n} c_{i}(q) e_{i}(t) \quad A\left(q, t_{k}\right) \quad c_{i}(q)
$$

Evaluation

Evaluation

Precessing binary black holes

Aligned-spin
$t=0.06$ (seconds)

Precessing
$t=0.06$ (seconds)

Precessing binary black holes

$t=0.09$ (seconds)

Coprecessing frame

$t=0.68$ (seconds)

$t=0.68$ (seconds)

Waveform decomposition

Results

Triangle $=95$ percentile, square $=$ median

Mismatch $=1-\frac{\left\langle f_{1}, f_{2}\right\rangle}{\sqrt{\left\langle f_{1}, f_{1}\right\rangle\left\langle f_{2}, f_{2}\right\rangle}}$ $\left\langle f_{1}, f_{2}\right\rangle=4 \mathcal{R}\left[\int_{f_{\min }}^{f_{\max }} \frac{{\tilde{h_{1}}}_{1}(f) \tilde{f}_{2}^{*}(f)}{S_{n}(f)} d f\right]$

Worst cases

Are we ready for precision GW astronomy?

Mismatch $\leq \frac{1}{2 \rho^{2}}$
Flanagan and Hughes, gr-qc/9710129

Upgrading surrogates is easy: just do more accurate NR simulations!

Remnant properties

Gravitational waves to \mathscr{I}^{+}

Final mass, m_{f}
Final spin, χ_{f}

Final velocity, \boldsymbol{v}_{f}

Conservation of energy

Conservation of angular momentum

Conservation of linear momentum

Remnant surrogate model

Goal: Map component BHs to remnant

Skip the messy strong-field regime!

Stages of a binary black hole

Remnant properties use case

Isi, Giesler et al., 1905.00869

Phenomenological fits

$$
\frac{M_{\mathrm{rem}}}{m}=(4 \eta)^{2}\left\{M_{0}+K_{1} \tilde{S}_{\|}+K_{2 a} \tilde{\Delta}_{\|} \delta m+K_{2 b} \tilde{S}_{\|}^{2}+, ~ \begin{array}{r}
K_{2 c} \tilde{\Delta}_{\|}^{2}+K_{2 d} \delta m^{2}+K_{3 a} \tilde{\Delta}_{\|} \tilde{S}_{\|} \delta m+ \\
K_{3 b} \tilde{S}_{\|} \tilde{\Delta}_{\|}^{2}+K_{3 c} \tilde{S}_{\|}^{3}+ \\
K_{3 d} \tilde{S}_{\|} \delta m^{2}+K_{4 a} \tilde{\Delta}_{\|} \tilde{S}_{\|}^{2} \delta m+ \\
K_{4 b} \tilde{\Delta}_{\|}^{3} \delta m+K_{4 c} \tilde{\Delta}_{\|}^{4}+K_{4 d} \tilde{S}_{\|}^{4}+ \\
K_{4 e} \tilde{\Delta}_{\|}^{2} \tilde{S}_{\|}^{2}+K_{4 f} \delta m^{4}+K_{4 g} \tilde{\Delta}_{\|} \delta m^{3}+ \\
\left.K_{4 h} \tilde{\Delta}_{\|}^{2} \delta m^{2}+K_{4 i} \tilde{S}_{\|}^{2} \delta m^{2}\right\}+ \\
{\left[1+\eta\left(\tilde{E}_{\mathrm{ISCO}}+11\right)\right] \delta m^{6},(1)}
\end{array}\right.
$$

Healy and Lousto, 1610.09713

What can we do better?

Fitting method

- Gaussian Process Regression (GPR).
- No need to assume phenomenology, let the data speak for itself!

Training with precessing NR

- Directly train model against generically precessing NR simulations.
- Reproduce NR as accurately as NR itself!

Varma et al., 1809.09125

Precessing remnant model: final mass

- HBMR = Hofmann, Barausse, and Rezzolla (1605.01938)
+ Barausse, Morozova, and Rezzolla (1206.3803)
- HL = Healy and Lousto (1610.09713)
- UIB = Jimenez-Forteza, et al. (1611.00332)
- CLZM = Campanelli, Lousto, Zlochower, and Merritt (1605.01067)

Precessing model: final kick

Fit accuracy requirements

	Δm_{f}	$\Delta \chi_{f}$	Validity
GW150914[1]	$0.1 M$	0.1	
At design $(3 \times \rho)$	$3.3 \times 10^{-2} \mathrm{M}$	3.3×10^{-2}	
Current fits $(95$ percentile) $)$	$5 \times 10^{-3} \mathrm{M}$	2×10^{-2}	$5 \times \rho_{\text {GW150914 }}$
Our fits $(95$ percentile) $)$	$5 \times 10^{-4} \mathrm{M}$	2×10^{-3}	$50 \times \rho_{G W 150914}$

Putting it all together: the super kick

$$
t=0.64 \text { (seconds) }
$$

Putting it all together: the super kick

Putting it all together: the super kick

Putting it all together: the super kick

$$
t=1.94 \text { (seconds) }
$$

Final velocity $=0.01 \mathrm{c}$
Movie has been sped up
to show the final "kick"

- 600

300
$0 \stackrel{\text { है }}{N}$
-300

Summary

- Numerical relativity simulations are accurate but very expensive
- Surrogate models cheaply reproduce the accuracy of simulations
- Surrogate models for waveform and final BH from precessing BBH
- More accurate than existing models by an order of magnitude

Surrogate models take:
Binary black hole simulations from supercomputers to your laptop!

Thank you!

movies at vijayvarma392.github.io/binaryBHexp

