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Abstract: Cosmological perturbation theory has a long tradition for describing the early phases of the Universe. As the observations of the CMB
radiation suggest, it is reasonable, at least as a first approximation, to implement cosmological inhomogeneities as small perturbations around
homogeneous and isotropic FRW solutions. In these approaches, backreactions between the inhomogeneities and the background are usualy
neglected. There is an ongoing debate about how and to which extend these backreactions affect the large scale structure of the Universe. Even at a
purely classical level, there is no conclusive answer to this question yet.

& nbsp;

In my talk, | am going to present a new systematic formalism for implementing backreactions in cosmological perturbation theory, in which both,
the perturbations and the homogeneous degrees of freedom are considered as quantum degrees of freedom. As a more realistic theory of quantum
fields on quantum cosmological space times, it can help to close the gap between a full theory of quantum gravity and symmetry-reduced models of
guantum cosmology, and to confront these theories with observations. Our results show that quantum backreactions imply non-trivial corrections
that are potentially phenomenologically significant.
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Overview

1. The Status Quo

o, ¢ Quantum Cosmology
* with Cosmological Perturbations

2. Review of the Born-Oppenheimer Approximation
e for a molecular system

3. Backreactions with Space Adiabatic Perturbation Theory
* a systematic generalization

4. Backreactions for Cosmological Perturbation Theory

* Preparation of the canonical system
* Results for second order backreactions

5. Outlook and Summary
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Quantum Cosmology with Perturbations

e CMB measurements (e.g., by the Planck collaboration) suggest that
o Symmetry-reduced models of Gravity or Quantum Gravity give
reasonable descriptions of the early Universe.

e Numerous approaches to quantum cosmology, such as string
theory approaches (e.g., cyclic models?), euclidean® and lorentzian®
(path integral) approaches, spinfoam cosmologyd, (canonical) loop
quantum cosmology® and many more.

e Observations indicate deviations from this homogenous and
isotropic picture.

e First step: Include inhomogeneities as perturbative (quantum)
fields on fixed cosmological backgrounds.

‘[Steinhardt, Turok '05]

?[Hartle, Hawking '83], [Hawking '84]

¢[Feldbrugge, Lehners, Turok "17]

‘[Rovelli, Vidotto '08], [Bianchi, Rovelli, Vidotto "10]

°[Bojowald '99, '00], [Ashtekar, Bojowald, Lewandowski '03], [Ashtekar, Pawlowski, Singh '06)
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Quantum Cosmology with Perturbations

® |ntroduce perturbation fields for the metric and the matter fields on fixed
cosmological backgrounds®?.

)
i ]

e Gauge ambiguities: Generic coordinate transformations in GR don't
preserve split into homogeneous and inhomogeneous d.o.f.. Fictitious
perturbations.

® |ntroduce Gauge-invariant perturbation fields, e.g., Mukhanov-Sasaki
variables® for the scalar sector.

® Transformations for the perturbative d.o.f. depend on the homogeneous d.o.f.
Canonical structure of the whole system is broken.

* Mena Marugan et al.: Gauge-invariant scalar perturbations in (almost)
canonical system, (i.e., up to 2" order in the perturbations) on cosmological
backgrounds.©. Approaches for construction of gauge-invariant observables
to higher orders.?

4[Lifshitz "46]

*[Sasaki '83], [Mukhanov '88]

/[Castello Gomar, Martin-Benito, Mena Marugan '15]

“[Dittrich, Tambornino '06 '07], [Brunetti, Fredenhagen, Hack, Pinamonti, Rejzner '16]
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Backreactions in Cosmological Perturbation Theory

* Evaluation of perturbations on fixed (effective) quantum cosmological
backgrounds.

* No backreactions from perturbations onto the homogeneous sector. Discussion
of backreactions for the classical case.?

e Backreactions in the quantum case, i.e., for gquantum mechanical homogeneous
modes and perturbations, even less understood.

New Approach for Quantum Backreactions

® Coupled quantum systems with very different rates of change of the respective
subsystems offer approximative solutions by means of the Born-Oppenheimer
approximation.®

* |dea for gravitation-matter systems: Define a small perturbative parameter £ : = %

where, K = 87T G: gravitational coupling constant, A: (standard model) matter
coupling constants.

'[Feldbrugge, Lehners, Turok '17], [Bolliet et. al. '15], [S., Barrau et. al. '15]
?[Buchert et al. '03, '05, "15] , [Green, Wald '11, 12, '13, '14], [Kolb, Matarrese, Riotto '06]
3[Born, Oppenheimer '27]

Susanne Schander | FAU Erlangen and Univ. Grenoble Alpes | Quantum Cosmelogical Backreactions 5

Pirsa: 19110053 Page 6/28



A Born-Oppenheimer-like Scheme*

Recall Born-Oppenheimer theory for molecules
o, ® Exploit very small mass ratio of electrons and nuclei,

P \QQK

My
Molecular Hamiltonian in Schrodinger representation

x € R¥: positions of the nuclei, y € IR®: positions of the electrons.

A\ AN
H=—-e2— - =L 4+ V(y)+ V.(x,y)+ V, 1
om  am, FVL(y) + Vea(x,y) + Vi(x) (1)

H.(x) (2)

2m

Structure of the problem suggests to solve the eigenvalue problem for H.(x) and
define x-dependent projections, P,(x) := Wn(X;y¥) (Wn(X;¥),"),

A.OO)Wa(x:y) = Ed(x)Wa(x;y),  [H(x),Pa(x)] =0 VxR (3)

‘[Born, Oppenheimer '27]
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A Born-Oppenheimer-like Scheme

Define a projection on the full Hilbert space, ¢ = L#(R¥) @ L*(R%) = L*(RY L?(R))
by means of a direct integral, P, := [ dx P,(x)°. Then,

[H,P,) = O(e), (4)

i.e., the subspace of .77 associated with an energy band n of the electrons is
almost invariant under the full dynamics.

Hamiltonian restricted to one of these electron subspaces,
ﬁ'{ell,n = Pnﬁfpn (5)

Dynamics not easy to extract: Perform unitary transformation U : 77 — L[2(IR¥),
e.g., by projecting on the electron subspace P,(x).

Define effective Hamiltonian for the nuclei including the backreactions on the
simpler reference space,

5[Teufel "03]

~4
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A Born-Oppenheimer-like Scheme
Result for molecular example,

‘J‘D‘

A VAN

He' = — —% L E (x) + O(£°). 7
eff,n 2MN n( ) ( ) ( )

Backreactions introduce potential energy due to electron-proton coupling.

Valid only for times t << £~ 't,, but interesting dynamics for nuclei happens for
t > e ..

Improve on this by means of a perturbation theory with respect to €.

The Space Adiabatic Theorem®

There exists (under certain assumptions on the structure of the system) a true
projector, I, € £ (), associated with a subspace of the “fast” subsystem,

such that, A
H.N,) = 6(e™). (8)

§[Hovermann, Spohn, Teufel '01], [Panati, Spohn, Teufel ‘03]
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Space Adiabatic Perturbation Theory’

e Straightforward perturbative construction scheme for backreactions
o, from the n-th eigenstate of the light (electron) systems on the heavy
(nucleus) systems.

e Born-Oppenheimer approximation = 0" order space adiabatic
perturbation theory (SAPT).

Iterative Construction of
1) a projection operator (commutes with the Hamilton operator up to
O(e"*") at k-th order): I, =, + Y5, €11,
2) a unitary operator, U, = fl,-ﬂ + Y5, ek U, and

3) an effective Hamilton operator for the heavy subsystem,
Heﬂ,n = eff,n,0 _+_ Zf:1 ngeH,n,k'

where n: quantun number of the light subsystem.

’[Panati,Spohn, Teufel '02, '03, '07]
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Applications of Space Adiabatic Perturbation Theory

¢ Wide range of applicability since conditions on the structure of the
system are mild: Local energy gap between the “fast” subspaces, tensor
product structure of the Hilbert space, 3¢ = 3 @ .

0,

e Concrete analysis performed with deformation (or phase space)
quantum mechanics (i.e. pseudo-differential calculus®) for the heavy
subsystem.

e For example: Dirac equation with slowly varying external potentials, T-BMT
equation for the spin dynamics of a relativistic particle in the semiclassical
limit and backreaction onto the translational motion.'°

e Formalism applicable to constrained systems. No time variable is heeded
(hence, the name...).

#[Panati, Spohn, Teufel '03], [Teufel '03]
?[Folland '89], [Hormander '85], [Dimassi, Sjostrand '99]
[Teufel '03]
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SAPT for Cosmological Perturbation Theory

Space adiabatic pertubation theory initially developed for quantum mechanical
aystems with a finite number of degrees of freedom.

Here: apply SAPT to cosmological perturbation theory, i.e., a quantum field theory
with infinitely many degrees of freedom.

Meet several challenges'’

e Generic problems due to infinite number of degrees of freedom
(1.e., existence of infinitely many inequivalent representations for the
field algebra).

e Occurence of indefinite mass squared values.

e Non-polynomial operators in the effective Hamilton constraint for the
homogeneous sector.

"[S., Thiemann 19 [, IV]
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Preparation of the Hamilton Constraint
¢ 4D-manifold . =2 R x T® where T? has finite side lenghts L.

o ® Gravity with cosmological constant /A, gravitational constant k
+ Scalar field ® with mass mg, and coupling constant A.

* Homogeneous sector: scale factor a, lapse N, and scalar field Qo,
* Perturbations of the spatial metric (a(x),B(x),h"(x)), lapse g(x),
shift k(x) and the scalar matter field f( x).

Procedure
1. Expand the action S up to 2" order in the perturbations.

2. Perform Legendre transformation and define associate conjugate momenta for

e the homogeneous sector, (p,, 7, )
o the perturbations, (7. (x), 75 (x), m;(x), 7 (x)).

Hamilton constraint up to second order in the perturbations,
H = Ny | A+ HY + Y|+ g- 75+ k- Ay (9)
¢ Need for gauge-invariant variables at the perturbative level.

e Generation of new secondary constraints.
e Hilbert-Schmidt condition is not satisfied.

Susanne Schander | FAU Erlangen and Univ. Grenoble Alpes | Quantum Cosmological Backreactions 2
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Meeting the Hilbert-Schmidt Condition
Structure suggests to consider a simple rescaling of the fields by a,
am n'f

. fi=a-f, & :=—.
a

This breaks the canonical structure of the system.

Solution: More Generic Transformations for the System12

Restore the whole perturbative system and consider transformations which...

1. are linear for the perturbation fields y, with ¥ = A(9,. 7, a,p,) X s.t. the gauge
-invariant Mukhanov-Sasaki variable v and .77, .7, become canonical variables,

2. restore the canonical structure of the full system (up to second order in the
perturbations) by means of transformations for the homogeneous variables

((})0* Ty, aspa) — ((/’o, ﬁ-'o, é,_ ba)-
3. meet the Hilbert-Schmidt condition,

4. cancel terms that are not densely defined on Fock space.

?[Castello Gomar, Martin-Benito, Mena Marugan '15]
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Meeting the Hilbert-Schmidt Condition
Structure suggests to consider a simple rescaling of the fields by a,
Y

=a-f, m.=—.
a

A g
SN f

This breaks the canonical structure of the system.

Solution: More Generic Transformations for the System12

Restore the whole perturbative system and consider transformations which...

1. are linear for the perturbation fields y, with ¥ = A({,, 7T,. a,p,) X s.t. the gauge
-invariant Mukhanov-Sasaki variable v and .77, .7/, become canonical variables,

2. restore the canonical structure of the full system (up to second order in the
perturbations) by means of transformations for the homogeneous variables

((})0* Tos aspa) — ((/)03 ﬁ-'o, 53 ba)-
3. meet the Hilbert-Schmidt condition,

4. cancel terms that are not densely defined on Fock space.

?[Castello Gomar, Martin-Benito, Mena Marugan '15]
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SAPT for Quantum Cosmological Perturbation Theory

® Linear quantum constraints /(q and .77, can be solved naturally.
JD.

e Only remaining constraint: V5" :— % + )f;\; + f‘fk’ =0

Next step: Introduce the Adiabatic Perturbation Parameter £

Adiabatic perturbation parameter for gravitation-matter system: €2 := f{» Introduce € and
multiply the whole constraint by €2 and A ",

N ’ 1 Eq 2 ‘.,r2 1 o
HYS — W {{_3 (12 P + Aa® + 5”0? + 2&‘2a3¢;) (12)
a

aB

1 ‘ f e} ;’I'"'JT i ; ”
+ 23 Jrs d3x (Irf +vet (=A+ME) v+ T" + Hle* (=3A + (eM)?) h,—,—)]
a Jr ’

where W: Weyl quantization w.r.t. the whole system, and with effective Mukhanov-Sasaki and tensor
masses,

4.2 2 4
" £'p 7¢€° b a, m, ,
M;,.‘, e B 0 R0 48 q + r772 2, (13)
. 2 2 o9
18a 24 Pa p
4 2
2 &P 2 2 2
(eMp)? = =~ —g°mia° P, —6A\a (14)
6 a*
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SAPT for Quantum Cosmological Perturbation Theory

e Technical realization: Deformation quantization'® with respect to the
homogeneous degrees of freedom. Therefore, define a rescaling,

£2p, = P,y EM = T, (15)

€

e Perform a Wigner-transformation W' of the operators on the full Hilbert space

hom
w.r.t. the homogeneous d.o.f.,
" (a, pay Po. To) = Wy [HY"] € S(&:T, L(F,)) (16)

is a function on the homogeneous phase space [ with values in the space of linear
operators on the perturbation (Fock) Hilbert space, .Z(.%,).

e The operator product transforms into a Moyal product “x.” on S(¢;I, Z(.%,)).
E.g., Weyl-ordered star-product for functions f,gon I,

2 .2

i€ ig? € ; o
fr.g=Ffg-+ —2 {fg}[%w -+ '—é“{f,g}(ﬂ‘pg) - é Z I'Igl'lg‘r(c"?,(?k f)(()f()f g) + (}’(ES)
iJ,k,l

where [, € A?(TT) is the Poisson bi-vector restricted to the inflaton phase space.

3[Groenewold '46], [Moyal '49], [Kontsevich '97]
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SAPT for Quantum Cosmological Perturbation Theory

e Technical realization: Deformation quantization'® with respect to the
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SAPT for Quantum Cosmological Perturbation Theory

SAPT step by step

1. Wigner-transform the Hamilton constraint operator H"S" with respect to
the homogeneous d.o.f. — function on [" with values in the perturbation field
Fock space . (.%,).

Note: States in .%, depend parametrically on (@,, 7T,, a, p. ).

2. Take a discrete eigenstate ¢, € ., and construct the projector,
Mo, = e,(e, )z € L(F).

3. Determine the Wigner-transformed symbol functions as a perturbation
series in €,
o My := YK €M, must satisfy, hxe Ny — Muyreh = O(e77).
where [y is the reference projection on the simpler subspace.
o PSP = Ux Mk AMP % Mk U],

eff (k) —

Susanne Schander | FAU Erlangen and Univ. Grenoble Alpes | Quantum Cosmological Backreactions 17
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SAPT for Quantum Cosmological Perturbation Theory

Effective Hamilton Constraint at o' Order (Born-Oppenheimer)

Let for simplicity, V = 0 and A = 0, use original variables and rescale by a
constant.

_&n ff)

HMS“ — lMIUIH LS - o L
12a  2a°

elf,0

where the sums run over 2 Z3 \0, and [l is the polarization label (odd or even) for the tensor

modes.

e Standard FRW + homogeneous inflaton Hamilton constraint (extendible to
V # 0and A # 0)
e plus '

Note: Only finitely many nr ,, husx hon-vanishing!

Susanne Schander | FAU Erlangen and Univ. Grenoble Alpes | Quantum Cosmological Backreactions
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SAPT for Quantum Cosmological Perturbation Theory

Effective Hamilton Constraint at 2"® Order (Backreaction)

Computations involve derivatives of e, w.r.t. (¢, Ty, a, ps),

Jep
Z}R = ;( car’m) o (17)

- Z (CXHMSK (po"]ro‘a pe‘f)hn} 1 +B”M5k ((PO"JTO"a pﬂ)hrn 1 + ---) en (18)

sk — 25 s i +2..0

and similarly <7, , </,, <, (connections). Evaluation for the model with V = 0,

ar -

A =0 and restrlctlon to the Pphase space regions for which M M2, >0, M2 >

znmw 1 En,ﬁ-‘Jl 1

£ MS,h
Hsfff)‘ = Whum e M\(‘pﬂ . 4a, pa) -+ L / h’l‘((pﬂ- T, a-pa)
2 A )2Y\5/2 ‘
(k \1%) / (18k 6(eMr)?)
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SAPT for Quantum Cosmological Perturbation Theory

Result: Effective Hamilton constraint for the homogeneous d.o.f. with
backreactions from the scalar and tensor modes (from one of the (possibly
degenerate) subspaces of the relevant eigenspace, n).

MS,h £ paz 1 ‘TL 2
Hsrf (2) = Wiom [ L —E ; + E ;\5 Z 24+ q " Nys & + P \/1 Bk ( Ml‘)c LT
k M

2N i, + 1 3 ,pim

Z 2 avE /o € 11 (19)
K, (iBKfr Fe(eMp)?)>/= 2 -

where ¢: humerical constant.

Even if the perturbations are switched off (i.e., if all quantum numbers (Nysz, Nz .)
vanish), Casimir-type backreactions remain!
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SAPT for Quantum Cosmological Perturbation Theory

Analysis of the Constraint: Non-Polynomial Form

Effective Hamiltonian has contributions with non-polynomial functions of both, the
configuration and the momentum variables.

Consider for example the bare Casimir-term,

~MSH 3 - gf f 1 TEO2 1 81 m)° £aps ‘ e*atp? i
Hgff(g) - Vvhmn L T ‘J!_ o \3 Z ' D NEin 19 6 1 ‘ 5 C | a
' 12 a 2 a ; (k-_ | M’\j\) )/ & 4 3'° p° 27 ars

Z lo, 3 gpiT,
i ey ANE /0 ) ” é .
i~ (18K7, +6(em)?)5/2 2
Possible Solutions

e Estimates of the sum by means of integrals.

¢ Find dense set of vectors which is invariant under any of the considered
operators.'#

“[Thiemann, in prep.]
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SAPT for Quantum Cosmological Perturbation Theory

There are regions in the homogeneous phase space [ for which,

Ml\-l.\'((po.ﬂxﬂaaapa)z < 03 (EM]‘)((DO?EOsaspa)z <0
— Tachyonic instabilities! Already for standard Mukhanov-Sasaki model.

Avoidance of Tachyonic Instabilities

¢ |n the model presented above: Perform a canonical embedding such that the
positivity of the masses becomes manifest (restriction of the phase space).

* A priori unjustified, but positive mass region contains at least the kernel
of the classical homogeneous constraint

Further Improvement

e Explore the space of transformations A(¢,, 7,, a, p,) in order to obtain
positive definite M2, and M? everywhere in phase space.

* Restrict to wave vectors &, for which (k® + MZ) and (18K + 6(&M;)?)
strictly positive.

Susanne Schander | FAU Erlangen and Univ. Grenoble Alpes | Quantum Cosmelogical Backreactions 22
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Outlook

Backreactions in Quantum Cosmology

® Explore the space of possible (almost) canonical transformations for
obtaining positive definite mass squares, Mﬁs and Mﬁ.‘s

* Treat the Hamilton constraint classically in order to learn for the quantum analysis.

e First analyse simpler models, e.g., inflaton zero mode backreaction on
homogeneous geometry or deparmetrised scalar field models.'®

* Analyse the solutions of E_he full Hamilton constraint with backreactions:
Find a set of dense invariant vectors. Evaluate the possible effects on the bounce
dynamics in quantum cosmology.

® Numerical evaluation in order to compare to recent cosmological data
(e.g., effects on inflationary dynamics, generation of primordial scalar and tensor
power spectra for the modified background.'’

5[S., Thiemann 19 [, IV]
“[Neuser, S., Thiemann "19 l], [S., Thiemann '19 (ll1)]
"[Martineau, Barrau, S. '17], [Lesgourges '11], [S., Barrau et. al. '15])
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Outlook

e Compute higher orders in the space adiabatic perturbative scheme and
improve the estimates. Check the convergence of the formal power series.

¢ Find relation of our results (linear order cosmological perturbation theory)
to higher order gauge-invariant formalisms.'®

Further Applications of Space Adiabatic Perturbation Theory

e Transition to full quantum gravity (i.e., no split into homogeneous and
inhomogeneous degrees of freedom).'®

e Apply space adiabatic perturbation theory to quantum mechanical
micro-engine model in order to understand the energy transition from

a “fast” bosonic system coupled to a heavy particle moving in a
gravitational potential.?°

#[Dittrich, Tambornino '06 '07], [Brunetti, Fredenhagen, Hack, Pinamonti, Rejzner '16]
9[Stottmeister, Thiemann 15 (1),(11),(l11)]
20[Anglin, Eichmann, S., work in progress]
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Summary

® Application of systematic space adiabatic perturbation theory to the
cosmological setting for including backreactions from the perturbations
onto the homogeneous sector. S., Thiemann '19 []

e Computation of non-trivial backreactions up to second (space adiabatic) order for,

* homogeneous geometry with backreactions from zero mode of the
inflaton field, [Neuser, S., Thiemann '19 I1]

* homogeneous geometry with backreactions from an inflaton field
(deparametrised model with additional dust fields), [S.. Thiemann '19 1]

* homogeneous geometry and inflaton with backreactions from
gauge-invariant Mukhanov-Sasaki and tensor perturbations.
[S., Thiemann 19 V]

* Non-trivial backreactions from perturbations onto the homogeneous and isotropic
sector need to be evaluated (analytically or numerically).

e Computation of backreaction effects on the dynamics of the homogeneous sector
need a variety of mathematical tools.

¢ Derive a quantum analog of the BKL conjecture.

® Direct comparison with observational data possible.
[S., Barrau et. al. '15], [Martineau, Barrau, S. "17]
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SAPT for Quantum Cosmological Perturbation Theory
Result: Effective Hamilton constraint for the homogeneous d.o.f. with

backreactions from the scalar and tensor modes (from one of the (possibly
degenerate) subspaces of the relevant eigenspace, n).

H:;?(.: e Whm‘n !L (__2 p; - ) _+ - Z \{ k _+ MM? nMSk + . \/‘l Bk )2 ' nTﬁ.p

k;t

L 2nusi +1 81 7, .1 | e%a’p; | 1‘4514,04)L
' 2 \5/2 9.6 = —=
(k2 + M5s)%/2 4 a'9p8 on: 4t
o,
2z + 1 3 4 pPm! |
Z - Tk, — . f"” 'II (19)
A (18K +6(eMp)?)>/= 2 a

where ¢: numerical constant.

Even if the perturbations are switched off (i.e., if all quantum numbers (Nysz, Nz )
vanish), Casimir-type backreactions remain!
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