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Abstract: Many complex systems have a generative, or linguistic, aspect: life is written in the language of DNA; protein structure is written in a
language of amino acids, and human endeavour is often written in text. Are there universal aspects of the relationship between sequence and
structure? | am trying to answer this question using models of random languages. Recently | proposed a model of random context-free languages [1]
and showed using simulations that the model has a transition from an unintelligent phase to an ordered phase. In the former, produced sequences
look like noise, while in the latter they have a nontrivial Shannon entropy; thus the transition corresponds to the emergence of information-carrying
in the language.& nbsp;

In thistalk | will explain the basics of natural language syntax, without assuming any prior knowledge of linguistics. | will present the results from
the model above, and explain how the model is related to complex matrix models with disorder [2].

& nbsp;

[1]& nbsp; https://journal s.aps.org/prl/abstract/10.1103/PhysRevL ett.122.128301
[2] & nbsp; https.//arxiv.org/abs/1902.07516

& nbsp;

& nbsp;
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motivation — complex generative systems

sequences encode structure

Genome Sequence

AGATAACTGGGCCOCCTGOGOTCAGGAGGUCTTCACCCTCTGCTCTGLGGTAAAGGTAGTAGA
e 303 n
¥ { human PHPPLA==NEFRY FORATTTBEVI 3 homSap
4 r - thesus PHPPLA-<HEFRY FORHTTTREYI
“T marmosel  PWPPLR
"l matiss PHPPLI- < HEWKY 5 "
i dog PHPPLN- « NEFEY FORNTTHEEVECK
" claphant PHPPLN=<NEFEYFONHTTTRBY
by Opassum PHPLLIN - «NEPEYFQRNTTTRSV
bl platy pus PHPALN= - NEPRYFQRNTTTPTY
o chicken PHPPLRA-=NEYKY FQRMTATBHVI
4 frog PHPLLA- - BEFKHFQILTHTPTVEDKERY
LL coclcanth PHNPERLENEFRY FQENTTTRTVI KMRP la0Cha
. M- pOlled gAT  PHHPRRLENKFKYFQRNTHTPTL W lepOiu
™ slickleback  PWHPLRLENEFKHFRRNTATARY KNI gasAcu
"o skate PHHP TRLEREFKNFORNTSTPSV KNI leuEn
m( hagfish FHHUBKBLYKENKHETHLT BAAN T
tnicate PH== = ALFKEMKY FERTTTGEY arEeLken clolnl
L amphiosus  Pie=- - TLREGDMKF FBRL T SO TER HF I « braFlo
unn{ TRS[" %OFIWOMM  F-- <RLAKENBF TRV SETKE KN v sacKow
wrchin ¥« RLEGEMAY F ERL T KTAGHEGH ERFRPLEDR  sirPur
B Call PH o=« HLPACLAWFERNTLN RPVIN v eseCal

n "

amino acid sequence

Are there universal features of the
sequence — structure map?
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natural language as a model system

natural language is a complex generative system

& has been studied for 100+ years

Can we use it as a model system?

quantitative

foundation for richer problems
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rigidity of language

1. Is John the man who is tall?

2. *Is John is the man who tall?

3. Colorless green ideas sleep furiously.

4, *Furiously sleep ideas green colorless.

syntax = logical structure
semantics = meaning’ = connection to ‘truth’

Chomsky 1950s
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formal grammars
(Panini 400BC, Chomsky, Backus 1950s)

grammar! = set of string rewriting rules

a,b,c,.... hidden? symbols e.g. S—ss
s =+ AsB
A,B,C,.... observable3 symbols s — AB
begin with start symbol, s s = ss — AsBs — AABBs —
AABBAB

repeatedly apply rules until string
of observables equivalentto (()) ()

language = set of observable strings

I grammar = ‘generative grammar’ 2 'nonterminal’ 3 terminal’
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Chomsky hierarchy (1950’s)

recursively enumerable complex & rich

A

context-sensitive

context-free

regular simple & limited
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Chomsky hierarchy (1950’s)

recursively enumerable  -cecreeeeeeeeees automaton with infinite memory 1
context-sensitive  ccreeeeeeiiiei automaton with finite memory 2
context-free ... automaton with stack memory 3
regular cccooeeeeieeeiiin finite-state automaton

' Turing machine
2 linear-bounded non-deterministic Turing machine
3 non-deterministic pushdown automaton
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structure of derivations
® always linear

regular grammar: ® used in computer science
(e.g. search patterns)

s a — a b C ® structure of hidden
‘ ‘ ‘ i ‘.\ Markov models (used in
A C X Y E

protein sequence analysis)

context-free grammar: ;\
® always atree A S b —~——
® used in linguistics for phrase
structure (Chomsky 1956) /
® central to computer science B

since Backus-Naur works

b
~1960 +
X
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structure of derivations

context-sensitive grammar: s = Asbc = AAbcbc = AABcbc
= AABbcc = AABBcc = AABBCc
= AABBCC

grammar:

s— Asbc
s = Abc
cb — bc
Ab — AB
Bb — BB
Bc = BC
Cc —=CC
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what about natural languages?

~7000 existing languages
only 2 have confirmed non-context-free features (Swiss-German, Bambara)

l.e. context-free languages define an
ensemble for natural language syntax

8

™ content of the tree?
Nl_‘ VP
Det N v / \[,,) ‘the cave’ behaves like ‘cave’
R RN _ -
(the ) (boar ) [ o NP 'into the cave’ behaves like ‘into—noun’
N \"” ( \’\'1!11\'1‘[1.-.)! I\
~— (-inl‘n:} Det N
SN TN
(\_ the ,\r ( cave )

Pullum & Gazdar 1982, Shieber 1985, Culy 1985
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1st principle of language: composition
2nd principle of language: hierarchy

NP VP
DT NN PP SBAR
the feelings WHNP S
IN NP
of WDT NP VP
JJ CC NNS which
kindness and gentleness PRP VBD VBD SBARxS
| had entertained NPVP
CC DT JJNN ADVP VBD SBARxS
but a few moments RB gave NP VP
before
The feelings of kindness and gentle- NP PP CCVBG PP
ness which I had entertained but a NG ToNP and IN NP
few moments before gave place to gnashing
p|.i( e to JINN of NN

hellish rage and gnashing of teeth.

hellish rage
teeth

W. Gilpin, anline 2017
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language ensemble

Consider ensemble of CFGs

Mathematical theorems

<= borders of CFG space
® Japanese

® Cantonese
How do typical CFGs behave?

® F[rench

® Tagalo o :
= ® English = statistical mechanics of language !

-----

® Mohawk

Pirsa: 19110050 Page 13/31



random language model — strategy

1. Quantify grammar with weights = “energy’ for trees

low energy <= grammatical s
NP v
_ VAN
Dot N V Pr
2. Define ensemble of grammars AL A e \N]s
[\\‘llw,-‘) [_\|..u'ul."___:| { Wnlknl.] |
= temperature’ of a grammar " (imo) 1)‘(.1 N|
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random language model

S
1. can assume binary tree'
NP VP
l)«-.l ..N V PP
. 1oL 1L /N
all rules either a— bcor a—B NN TN p NP
L\lllc‘.:_l | bear | | walked ) |
” S ;]
' (into ) Det N
L |
N TN
I:_ the _] [ cave ;
S~ NS

2. so far, rules have been yes/no. let rules — conditional probabilities

then a grammar is defined by M = P(a — be | a — hidden),

Ou.p = Pla — B | a — observable),

! binary tree = ‘Chomsky normal form’
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random language model

for simplicity, fix tree topology T o = hidden symbols

Mape = P(a = be | a — hidden), o = observables

Ou.p = P(a — B | a — observable),

= — Z Tabe(0) log My — Z pan(0,0)10g Oup

a,be a3

: | -
P({oi, 0 }|M, 0, T) = e

4

note: M,O are probabilities for a fixed grammar, then we have an ensemble of grammars
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random language model

S
1. can assume binary tree'
NP VP
l)«-.l ..N V PP
. 1oL 1L /N
all rules either a— bcor a—B NN TN p NP
L\lllc‘.:_l | bear | | walked ) |
” S ;]
' (into ) Det N
L |
N TN
I:_ the _] [ cave ;
S~ NS

2. so far, rules have been yes/no. let rules — conditional probabilities

then a grammar is defined by M = P(a — be | a — hidden),

Ou.p = Pla — B | a — observable),

! binary tree = ‘Chomsky normal form’
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random language model

what is the measure on grammars?

M,O act multiplicatively = lognormal

] 2 "' IH. e ] 2 ()N. ) i
80= 73 3 log? { ”’ ] L 8= o > log® [ ot } small sparsity
Y ah, ‘ T aB C = uniform sampling of ‘rules’
deep sparsity surface sparsity = unintelligent

P(__;(A'Ig ()) = Z(: l J e €dSdpT €8s

€4 deep temperature N3 NT

S

€s  surface temperature

Pirsa: 19110050 Page 18/31



random language model

intuition for ‘temperatures’

large €4
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I"andom Ianguage mOdeI — Numerical results

Fix T=27, €s=0.01 N T

Vary N, €4. Sample ~ 25 000 languages

I 1 |
1 - ]
N , T Shannon entropies
0.9 ' N k=1 09 . !
. 1 : ,"\"v 200 K 1 E‘::‘ /:’r'.,.-.-_,.._m..-r-,-
208 £ TN =40,k =1 08| e |
— o A ] . e -
— ,-'}"’J :—}—;\l 80, & 1 — T e I.----—*D----—--.--ﬂ--a
=07 J“i'x’ VN =10,k =2 o 0.7 e
PG ot VN =200k =2 et : ) 3
0.6 a1’ ' [ N=40k=2 0.6~ : € = €q/N
F r-F N =10,k =3 .
05 ‘ ‘ 1 . : . . ; . I . ‘ .
109 102 10" 10° 10" 10% 10° 10% 102 10" 10° 10" 10% 107
PR -~ ] . -~ oy
() €, log® N (b) cqilog” N
I [ y . _ 1 _
Si(G: k) = k(lug L/Ploy,o9,. .., ﬁ,g,|£_4)> S(G: k) = Z(Iug L/P(oy,0q,...,06|G))

emergence of deep structure at € ~ N /log® N
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random Ianguage mOdel — Numerical results

€d = €q4/N?
102 10°
10"
Sew, d
10° | ‘Tf,',:':-..ﬁ,_“__r::_._ w——
t‘*{ 10 —é&, = 0.0002 Permutation symmetry spontaneously broken at &-
—=iy = 0.0032 1
109 - :: 0.0612
€ B¢ . B y
g Can understand &-from balancing ‘energy’ and entropy
103 ‘
0 0.2 0.4 0.6 0.8 1
() rank(ca)/N
Zipf plot
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random Ianguage mOdel — Numerical results

€d = €q4/N?

10" -
Seo € 25 } N 10
S N 20
R S f
10 ETETSETT 2 N = a0
ST 0 N = 80
= f . N, (' 1.5
g 10 &y = 0.0002 \ P
——iy = 0.0032 1 & (‘_20 =\ - 2
5 = iy = 00512 & T Laa,b,e abe?
10 iy = 0819 05
0 13.1
102 ‘ 0 e e e
0 02 04 06 08 1 10% 102 10" 10° 10" 10% 10°
(a) rank(ea)/N (b €slog® N

Zipf plot Qube(G) = (0, a(N%00,, 400, c — 1)),
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how does a child learn syntax?

“principles & parameters” theory 1

Child endowed with principles of grammar

Syntax controlled by parameters, e.g.
verbs come before objects, or vice versa

but apparently many parameters are needed! ?

' Chomsky 1993 2 Ramchand & Svenonius 2014
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how does a child learn syntax?

“principles & parameters” theory 1

Child endowed with principles of grammar

) : Syntax controlled by parameters, e.g.
English _ verbs come before objects, or vice versa

Japanese

i but apparently many parameters are needed! 2

) RLM: learning = ‘energy’ descent in grammar space
parameters = symmetry breaking transitions

key point: transitions are emergent properties of model

theoretical phase diagram
= syntax of human languages?

' Chomsky 1993 2 Ramchand & Svenonius 2014
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theory

-energy logP({a, 00 }| M, O, T) = log P,, + Z log M, R Z log Oy, | Ocry

acll aedil

looks a bit like a spin model ... except

J,’_}‘A, vS. ALT”TJ T
l’Tr\u (T( ¥

Is there a more natural representation?
Idea of theory:

Write down model whose Feynman diagrams
generate trees with correct weights
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3 L,

\ Li
vp
/ N\ RN q
Det N V PP t

! l L,

( \Hu) Qj[“] ( “.”“md) | Lt| R I,, Ry
S~ N Det N R L il

( ilIT-(l.) l l I‘.||
Fom LLLaA

NP

(a)

4

~]— ~]

Figure 3. Feynman  diagraan  corresponding  to derivation  tree  in Figure
la. Alphabet of hidden symbols is yg (S NPVE Det NV P, PP) and
alphabet of surface symbols s vy, (the, bear,walked, into, cave). Vertices
arc represented by A with heads at the tip. The diagram has a weight

20000 g VM o M s Mios Mara O3 0500074 O,
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theory

Feynman diagrams of F generate graphs F(G) = / DI / DR {,—ﬁ L[l Li+ R, Rl ol
with correct weights B )

[ =Ch(Ly+ Ri)+ €Y Ou(Lh+ R 40 Mae(Ll + RN LR,

@ a,be
v/ 4 of
. Vel 7 f]Q (]& (}f} -
Extract m trees with | leaves Z(G;m, ) = m! yé T )& cvt P oo F9),

. § . < ¥ 1

i ———  OZ(G)" 9] -
Disorder (grammar) average log Z(G) = — = - G)"

on n=>0 on n=>0
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theory — replica symmetric ansatz

N N =20

107" 109 10! 10°
cqlog N

Figure 2. Order parameter ()2 on logarithmic axes. Solid lines show numerical
data from random grammars with N as indicated and ¢ = 10°. The platean at
large ¢4 is a finite-f effect; empirically it scales as Q5 ~ NT/f. The function
q(éq) = (e — 1)(N2 — 1)/N1is the theoretical prediction, Eq.45.
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perspectives

phase diagram:  \yhat is the phase diagram of CF languages (with fields)?

Where are human languages?
Is this robust in merge grammars? (c.f. Piatelli-Palmarini & Vitiello)

Is there a language that parses foldable proteins?
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perspectives

semantics: syntax isn’t everything..

e.g. who is ‘he’ in this dialogue: 1

Alice: I'm leaving you.
Bob: Who is he?!

Is there a physical approach to semantics?
c.f. lambda calculus, proof nets, ...

" from S Pinker, The Language Instinct
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conclusions

p N e complex systems can be generative
e natural language as a model system (compositional and hierarchical)
context-free grammars define a simple model for these properties
e ensemble of grammars = random language model
e RLM has a glass transition
e the statistical mechanical problem is not trivial, but not intractable

Mathematical linguistics has been around for 60 years.

It's time for physical linguistics!
numerics) Phys. Rev. Lett 201
(theory) J.Phys A 2019

Thanks to:

Remi Monasson, Jorge Kurchan, Francesco Zamponi,
Guilhem Semerjian, Pierfrancesco Urbani, Giorgio Parisi
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