Title: What is the landscape of natural language? Insights from a random language model

Speakers: Eric De Giuli

Series: Colloquium
Date: November 06, 2019-2:00 PM
URL: http://pirsa.org/19110050
Abstract: Many complex systems have a generative, or linguistic, aspect: life is written in the language of DNA; protein structure is written in a language of amino acids, and human endeavour is often written in text. Are there universal aspects of the relationship between sequence and structure? I am trying to answer this question using models of random languages. Recently I proposed a model of random context-free languages [1] and showed using simulations that the model has a transition from an unintelligent phase to an ordered phase. In the former, produced sequences look like noise, while in the latter they have a nontrivial Shannon entropy; thus the transition corresponds to the emergence of information-carrying in the language.\

In this talk I will explain the basics of natural language syntax, without assuming any prior knowledge of linguistics. I will present the results from the model above, and explain how the model is related to complex matrix models with disorder [2].

\

[1]\ https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.128301
[2]\ https://arxiv.org/abs/1902.07516
\
\

What is the landscape of natural language?

Insights from a random language model

Eric De Giuli
Department of Physics
Ryerson University

motivation - complex generative systems

Are there universal features of the sequence \rightarrow structure map?

natural language as a model system

natural language is a complex generative system
\& has been studied for $100+$ years

Can we use it as a model system?
quantitative
foundation for richer problems

rigidity of language

1. Is John the man who is tall?
2. *Is John is the man who tall?

3. Colorless green ideas sleep furiously.
4. *Furiously sleep ideas green colorless.
syntax = logical structure
semantics $=$ 'meaning' $=$ connection to 'truth'

formal grammars
 (Pāṇini 400BC, Chomsky, Backus 1950s)

grammar ${ }^{1}=$ set of string rewriting rules
a, b, c, \ldots. hidden ${ }^{2}$ symbols
A, B, C, \ldots. observable ${ }^{3}$ symbols
begin with start symbol, s
e.g. $s \rightarrow s s$
$s \rightarrow A s B$
$s \rightarrow A B$
$\mathrm{s} \rightarrow \mathrm{ss} \rightarrow \mathrm{AsBs} \rightarrow \mathrm{AABBs} \rightarrow$
repeatedly apply rules until string AABBAB of observables
language $=$ set of observable strings

Chomsky hierarchy (1950's)

recursively enumerable
context-sensitive
context-free
regular
complex \& rich

simple \& limited

Chomsky hierarchy (1950's)

structure of derivations

regular grammar:

- always linear
- used in computer science (e.g. search patterns)
- structure of hidden Markov models (used in protein sequence analysis)
context-free grammar:
- always a tree
- used in linguistics for phrase structure (Chomsky 1956)
- central to computer science since Backus-Naur works ~1960

structure of derivations

$s \Rightarrow A s b c \Rightarrow A A b c b c \Rightarrow A A B c b c$
$\Rightarrow \mathrm{AABbcc} \Rightarrow \mathrm{AABBcc} \Rightarrow \mathrm{AABBCc}$
\Rightarrow AABBCC

what about natural languages?

- ~7000 existing languages
- only 2 have confirmed non-context-free features (Swiss-German, Bambara)
i.e. context-free languages define an ensemble for natural language syntax

content of the tree?
'the cave' behaves like 'cave'
'into the cave' behaves like 'into-noun'

```
                                    1st principle of language: composition
```

 2nd
    ```
```

 2nd
    ```

```

The feelings of kindness and gentleness which I had entertained but a few moments before gave place to hellish rage and gnashing of teeth.

```
\(1^{\text {st }}\) principle of language: composition \(2^{\text {nd }}\) principle of language: hierarchy
```

ness and gentleness
had entertained NPVP
but a few moments RB gave NP VP

```
NP
```

NP
MTNN PPSBAR
MTNN PPSBAR
NJCCNNSS

```
    NJCCNNSS
```


language ensemble

Consider ensemble of CFGs
Mathematical theorems
\Leftrightarrow borders of CFG space

- Japanese
- Cantonese

How do typical CFGs behave?
\Rightarrow statistical mechanics of language !

random language model - strategy

1. Quantify grammar with weights \Rightarrow `energy’ for trees

$$
\text { low energy } \Longleftrightarrow \text { grammatical }
$$

2. Define ensemble of grammars
\Rightarrow 'temperature’ of a grammar

random language model

1. can assume binary tree ${ }^{1}$
all rules either $\quad \mathrm{a} \rightarrow$ bc or $\mathrm{a} \rightarrow \mathrm{B}$

2. so far, rules have been yes/no. let rules \rightarrow conditional probabilities

$$
\text { then a grammar is defined by } \quad \begin{aligned}
M_{a b c} & =\mathbb{P}(a \rightarrow b c \mid a \rightarrow \text { hidden }), \\
O_{a B} & =\mathbb{P}(a \rightarrow B \mid a \rightarrow \text { observable }),
\end{aligned}
$$

${ }^{1}$ binary tree $=$ 'Chomsky normal form'

random language model

$$
\begin{array}{cr}
\text { for simplicity, fix tree topology } T & \sigma=\text { hidden syn } \\
\begin{array}{cc}
M_{a b c}=\mathbb{P}(a \rightarrow b c \mid a \rightarrow \text { hidden }), & o=\text { observable } \\
O_{a B}=\mathbb{P}(a \rightarrow B \mid a \rightarrow \text { observable }), & \\
E=-\sum_{a, b, c} \pi_{a b c}(\sigma) \log M_{a b c}-\sum_{a, B} \rho_{a B}(\sigma, o) \log O_{a B} \\
\mathbb{P}\left(\left\{\sigma_{i}, o_{t}\right\} \mid M, O, \mathcal{T}\right)=\frac{1}{Z} e^{-E} &
\end{array}
\end{array}
$$

note: M, O are probabilities for a fixed grammar, then we have an ensemble of grammars

random language model

1. can assume binary tree ${ }^{1}$
all rules either $\quad \mathrm{a} \rightarrow$ bc or $\mathrm{a} \rightarrow \mathrm{B}$

2. so far, rules have been yes/no. let rules \rightarrow conditional probabilities

$$
\text { then a grammar is defined by } \quad \begin{aligned}
M_{a b c} & =\mathbb{P}(a \rightarrow b c \mid a \rightarrow \text { hidden }), \\
O_{a B} & =\mathbb{P}(a \rightarrow B \mid a \rightarrow \text { observable }),
\end{aligned}
$$

${ }^{1}$ binary tree $=$ 'Chomsky normal form'

random language model

what is the measure on grammars?

$$
\begin{array}{ll}
\text { M,O act multiplicatively } & \Rightarrow \text { lognormal } \\
s_{d}=\frac{1}{N^{3}} \sum_{a, b, c} \log ^{2}\left[\frac{M_{a b c}}{\bar{M}}\right], s_{s}=\frac{1}{N T} \sum_{a, B} \log ^{2}\left[\frac{O_{a B}}{\bar{O}}\right] \quad \begin{aligned}
& \text { small sparsity } \\
& \text { deep sparsity } \text { sunface sparsity }
\end{aligned} & \Rightarrow \text { unintelligent }
\end{array}
$$

$$
\mathbb{P}_{G}(M, O) \equiv Z_{G}^{-1} J e^{-\epsilon_{d} s_{d}} e^{-\epsilon_{s} s_{s}}
$$

ϵ_{d} deep temperature
$\epsilon_{S} \quad$ surface temperature

$$
\overline{s_{d}} \sim \frac{N^{3}}{\epsilon_{d}} \quad \overline{s_{s}} \sim \frac{N T}{\epsilon_{s}}
$$

random language model
intuition for 'temperatures'

random language model - Numerical results

Fix $\mathrm{T}=27, \boldsymbol{\varepsilon}_{\mathrm{s}}=0.01 \mathrm{NT}$
Vary $\mathrm{N}, \boldsymbol{\varepsilon}_{\mathrm{d}}$. Sample ~ 25000 languages

emergence of deep structure at $\epsilon_{*} \sim N^{3} / \log ^{2} N$

random language model - Numericar esults

Zipf plot

$\tilde{\epsilon}_{d}=\epsilon_{d} / N^{3}$

Permutation symmetry spontaneously broken at ε^{*}

Can understand ε * from balancing `energy’ and entropy

random language model - Numericar resuls

how does a child learn syntax?

"principles \& parameters" theory ${ }^{1}$
Child endowed with principles of grammar
Syntax controlled by parameters, e.g. verbs come before objects, or vice versa
but apparently many parameters are needed! ${ }^{2}$

how does a child learn syntax?

"principles \& parameters" theory ${ }^{1}$

Child endowed with principles of grammar
Syntax controlled by parameters, e.g. verbs come before objects, or vice versa
but apparently many parameters are needed! ${ }^{2}$

RLM: learning = 'energy' descent in grammar space
parameters = symmetry breaking transitions
key point: transitions are emergent properties of model
theoretical phase diagram
\Rightarrow syntax of human languages?
${ }^{1}$ Chomsky 1993
${ }^{2}$ Ramchand \& Svenonius 2014

theory

-energy

$$
\log \mathbb{P}\left(\left\{\sigma_{i}, o_{t}\right\} \mid M, O, \mathcal{T}\right)=\log P_{\sigma_{0}}+\sum_{\alpha \in \Omega} \log M_{\sigma_{\alpha_{1}} \sigma_{\alpha_{2}} \sigma_{\alpha_{3}}}+\sum_{\alpha \in \partial \Omega} \log O_{\sigma_{\alpha_{1}} o_{\alpha_{2}}}
$$

looks a bit like a spin model ... except

$$
J_{i j k} \quad \text { vs. } \quad M_{\sigma_{i} \sigma_{j} \sigma_{k}}
$$

Is there a more natural representation?
Idea of theory:
Write down model whose Feynman diagrams
generate trees with correct weights

Figure 3. Feynman diagram corresponding to derivation tree in Figure 1a. Alphabet of hidden symbols is $\chi_{d}=(S, N P, V P, \operatorname{Det}, N, V, P, P P)$ and alphabet of surface symbols is $\chi_{s}=$ (the, bear, walked, into, cave). Vertices are represented by \wedge with heads at the tip. The diagram has a weight $2 h \xi^{6} \eta^{5} g^{11} M_{123} M_{245}^{2} M_{368} M_{872} O_{41}^{2} O_{52} O_{63} O_{74} O_{55}$.

theory

Feynman diagrams of F generate graphs
with correct weights

$$
\mathbb{F}(\mathcal{G})=\int D L \int D R e^{-\frac{1}{g} \sum_{a}\left[L_{a} L_{a}^{\dagger}+R_{a} R_{a}^{\dagger}\right]} e^{I}
$$

$$
I=\zeta h\left(L_{1}+R_{1}\right)+\xi \sum_{a} O_{a}\left(L_{a}^{\dagger}+R_{a}^{\dagger}\right)+\eta \sum_{a, b, c} M_{a b c}\left(L_{a}^{\dagger}+R_{a}^{\dagger}\right) L_{b} R_{c} .
$$

Extract m trees with I leaves

$$
\mathbb{Z}(\mathcal{G} ; m, \ell)=m!\oint^{\prime} \frac{d \zeta}{\zeta^{1+m}} \oint^{\prime} \frac{d \xi}{\xi^{1+\ell}} \oint^{\prime} \frac{d \eta}{\eta^{1+\ell-m}} \mathbb{F}(\mathcal{G})
$$

Disorder (grammar) average

$$
\overline{\log \mathbb{Z}(\mathcal{G})}=\overline{\left.\frac{\partial \mathbb{Z}(\mathcal{G})^{n}}{\partial n}\right|_{n=0}}=\left.\frac{\partial}{\partial n}\right|_{n=0} \overline{\mathbb{Z}(\mathcal{G})^{n}},
$$

theory - replica symmetric ansatz

Figure 2. Order parameter Q_{2} on logarithmic axes. Solid lines show numerical data from random grammars with N as indicated and $\ell \approx 10^{5}$. The plateau at large $\tilde{\epsilon}_{d}$ is a finite- ℓ effect; empirically it scales as $Q_{2}^{\infty} \sim N^{4} / \ell$. The function $q\left(\tilde{\epsilon}_{d}\right)=\left(e^{1 /\left(2 \bar{\epsilon}_{d}\right)}-1\right)\left(N^{2}-1\right) / N^{4}$ is the theoretical prediction, Eq.45.

perspectives

phase diagram: What is the phase diagram of CF languages (with fields)?
Where are human languages?
Is this robust in merge grammars? (c.f. Piatelli-Palmarini \& Vitiello)
Is there a language that parses foldable proteins?

perspectives

semantics: syntax isn't everything..
e.g. who is 'he' in this dialogue: ${ }^{1}$

Alice: I'm leaving you.
Bob: Who is he?!

Is there a physical approach to semantics?
c.f. lambda calculus, proof nets, ...
${ }^{1}$ from S Pinker, The Language Instinct

conclusions

- complex systems can be generative
- natural language as a model system (compositional and hierarchical)
- context-free grammars define a simple model for these properties
- ensemble of grammars = random language model
- RLM has a glass transition
- the statistical mechanical problem is not trivial, but not intractable

Mathematical linguistics has been around for 60 years. It's time for physical linguistics!

Thanks to:

Remi Monasson, Jorge Kurchan, Francesco Zamponi, Guilhem Semerjian, Pierfrancesco Urbani, Giorgio Parisi

