Title: What is the landscape of natural language? Insights from a random language model

Speakers: Eric De Giuli

Series: Colloquium

Date: November 06, 2019 - 2:00 PM

URL: http://pirsa.org/19110050

Abstract: Many complex systems have a generative, or linguistic, aspect: life is written in the language of DNA; protein structure is written in a language of amino acids, and human endeavour is often written in text. Are there universal aspects of the relationship between sequence and structure? I am trying to answer this question using models of random languages. Recently I proposed a model of random context-free languages [1] and showed using simulations that the model has a transition from an unintelligent phase to an ordered phase. In the former, produced sequences look like noise, while in the latter they have a nontrivial Shannon entropy; thus the transition corresponds to the emergence of information-carrying in the language.

In this talk I will explain the basics of natural language syntax, without assuming any prior knowledge of linguistics. I will present the results from the model above, and explain how the model is related to complex matrix models with disorder [2].

[1] https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.128301

[2] https://arxiv.org/abs/1902.07516

What is the landscape of natural language?

Insights from a random language model

Eric De Giuli

Department of Physics Ryerson University

Are there universal features of the sequence → structure map?

natural language as a model system

natural language is a complex generative system

& has been studied for 100+ years

Can we use it as a model system?

quantitative foundation for richer problems

rigidity of language

- 1. Is John the man who is tall?
- 2. *Is John is the man who tall?
- 3. Colorless green ideas sleep furiously.
- 4. *Furiously sleep ideas green colorless.

syntax = logical structure
semantics = `meaning' = connection to `truth'

Chomsky 1950s

formal grammars (Pāṇini 400BC, Chomsky, Backus 1950s)

grammar¹ = set of string rewriting rules

a,b,c,...hidden² symbolse.g. $s \rightarrow ss$ A,B,C,...observable³ symbols $s \rightarrow AB$

begin with start symbol, s

repeatedly apply rules until string of observables

 $s \rightarrow ss \rightarrow AsBs \rightarrow AABBs \rightarrow AABBAB$

equivalent to (())()

language = set of observable strings

¹ grammar = 'generative grammar' ² 'nonterminal' ³ 'terminal'

Chomsky hierarchy (1950's)

recursively enumerable

context-free

regular

simple & limited

Chomsky hierarchy (1950's)

¹ Turing machine ² linear-bounded non-deterministic Turing machine ³ non-deterministic pushdown automaton

structure of derivations

context-free grammar:

- always a tree
- used in linguistics for phrase structure (Chomsky 1956)
- central to computer science since Backus-Naur works ~1960

structure of derivations

context-sensitive grammar:

 $s \Rightarrow Asbc \Rightarrow AAbcbc \Rightarrow AABcbc$ $\Rightarrow AABbcc \Rightarrow AABBcc \Rightarrow AABBCc$

⇒ AABBCC

grammar:

 $s \rightarrow Asbc$ $s \rightarrow Abc$ $cb \rightarrow bc$ $Ab \rightarrow AB$ $Bb \rightarrow BB$ $Bc \rightarrow BC$ $Cc \rightarrow CC$

what about natural languages?

- ~7000 existing languages
- only 2 have confirmed non-context-free features (Swiss-German, Bambara)

i.e. context-free languages define an *ensemble* for natural language syntax

content of the tree?

'the cave' behaves like 'cave'

'into the cave' behaves like 'into-noun'

Pullum & Gazdar 1982, Shieber 1985, Culy 1985

W. Gilpin, online 2017

Mohawk

Consider ensemble of CFGs

Mathematical theorems \iff borders of CFG space

How do typical CFGs behave?

 \Rightarrow statistical mechanics of language !

random language model – strategy

1. Quantify grammar with weights \Rightarrow `energy' for trees

low energy \iff grammatical

- 2. Define ensemble of grammars
 - \Rightarrow `temperature' of a grammar

all rules either $a \rightarrow bc \text{ or } a \rightarrow B$

2. so far, rules have been yes/no. let rules \rightarrow conditional probabilities

then a grammar is defined by $M_{abc} = \mathbb{P}(a \to bc \mid a \to hidden),$ $O_{aB} = \mathbb{P}(a \to B \mid a \to observable),$

¹ binary tree = 'Chomsky normal form'

 \mathbf{S}

walked

VP

into

 \mathbf{PP}

Det

the

NP

Ν

cave

 \mathbf{NP}

Ν

bear

Det

the

for simplicity, fix tree topology T

 σ = hidden symbols, o = observables

 $M_{abc} = \mathbb{P}(a \to bc \mid a \to \text{hidden}),$ $O_{aB} = \mathbb{P}(a \to B \mid a \to \text{observable}),$

$$E = -\sum_{a,b,c} \pi_{abc}(\sigma) \log M_{abc} - \sum_{a,B} \rho_{aB}(\sigma,o) \log O_{aB}$$

$$\mathbb{P}(\{\sigma_i, o_t\} | M, O, \mathcal{T}) = \frac{1}{Z} e^{-E}$$

note: M,O are probabilities for a fixed grammar, then we have an ensemble of grammars

all rules either $a \rightarrow bc \text{ or } a \rightarrow B$

2. so far, rules have been yes/no. let rules \rightarrow conditional probabilities

then a grammar is defined by $M_{abc} = \mathbb{P}(a \to bc \mid a \to hidden),$ $O_{aB} = \mathbb{P}(a \to B \mid a \to observable),$

¹ binary tree = 'Chomsky normal form'

what is the measure on grammars?

M,O act multiplicatively \Rightarrow lognormal

$$s_d = \frac{1}{N^3} \sum_{a,b,c} \log^2 \left[\frac{M_{abc}}{\overline{M}} \right], \ \ s_s = \frac{1}{NT} \sum_{a,B} \log^2 \left[\frac{O_{aB}}{\overline{O}} \right]$$

deep sparsity

surface sparsity

small sparsity ⇒ uniform sampling of `rules' ⇒ unintelligent

$$\mathbb{P}_G(M,O) \equiv Z_G^{-1} J e^{-\epsilon_d s_d} e^{-\epsilon_s s_s}$$

$$\begin{array}{cc} \epsilon_d & \text{deep temperature} \\ \epsilon_s & \text{surface temperature} \end{array} & \overline{s_d} \sim \frac{N^3}{\epsilon_d} & \overline{s_s} \sim \frac{NT}{\epsilon_s} \end{array}$$

random language model – Numerical results

Fix T=27, $\boldsymbol{\varepsilon}_{s} = 0.01 \text{ N T}$

Vary N, $\boldsymbol{\varepsilon}_{d}$. Sample ~ 25 000 languages

emergence of deep structure at $\epsilon_* \sim N^3/\log^2 N$

how does a child learn syntax?

"principles & parameters" theory 1

Child endowed with principles of grammar

Syntax controlled by parameters, e.g. verbs come before objects, or vice versa

but apparently many parameters are needed!²

¹ Chomsky 1993 ² Ramchand & Svenonius 2014

how does a child learn syntax?

"principles & parameters" theory 1

Child endowed with principles of grammar

Syntax controlled by parameters, e.g. verbs come before objects, or vice versa

but apparently many parameters are needed!²

RLM: learning = `energy' descent in grammar space

parameters = symmetry breaking transitions

key point: transitions are emergent properties of model

theoretical phase diagram \Rightarrow syntax of human languages?

¹ Chomsky 1993 ² Ramchand & Svenonius 2014

theory

Is there a more natural representation?

Idea of theory:

Write down model whose Feynman diagrams generate trees with correct weights

Figure 3. Feynman diagram corresponding to derivation tree in Figure 1a. Alphabet of hidden symbols is $\chi_d = (S, NP, VP, Det, N, V, P, PP)$ and alphabet of surface symbols is $\chi_s = (the, bear, walked, into, cave)$. Vertices are represented by \wedge with heads at the tip. The diagram has a weight $2h\xi^6\eta^5g^{11}M_{123}M_{245}^2M_{368}M_{872}O_{41}^2O_{52}O_{63}O_{74}O_{55}$.

theory

Feynman diagrams of F generate graphs with correct weights

$$\mathbb{F}(\mathcal{G}) = \int DL \int DR \ e^{-\frac{1}{g} \sum_{a} \left[L_{a} L_{a}^{\dagger} + R_{a} R_{a}^{\dagger} \right]} e^{I}$$

$$I = \zeta h(L_1 + R_1) + \xi \sum_{a} O_a(L_a^{\dagger} + R_a^{\dagger}) + \eta \sum_{a,b,c} M_{abc}(L_a^{\dagger} + R_a^{\dagger}) L_b R_c.$$

Extract m trees with I leaves

$$\mathbb{Z}(\mathcal{G};m,\ell) = m! \oint' \frac{d\zeta}{\zeta^{1+m}} \oint' \frac{d\xi}{\xi^{1+\ell}} \oint' \frac{d\eta}{\eta^{1+\ell-m}} \mathbb{F}(\mathcal{G}),$$

Disorder (grammar) average

$$\overline{\log \mathbb{Z}(\mathcal{G})} = \left. \frac{\partial \mathbb{Z}(\mathcal{G})^n}{\partial n} \right|_{n=0} = \left. \frac{\partial}{\partial n} \right|_{n=0} \overline{\mathbb{Z}(\mathcal{G})^n},$$

theory — replica symmetric ansatz

Figure 2. Order parameter Q_2 on logarithmic axes. Solid lines show numerical data from random grammars with N as indicated and $\ell \approx 10^5$. The plateau at large $\tilde{\epsilon}_d$ is a finite- ℓ effect; empirically it scales as $Q_2^{\infty} \sim N^4/\ell$. The function $q(\tilde{\epsilon}_d) = (e^{1/(2\tilde{\epsilon}_d)} - 1)(N^2 - 1)/N^4$ is the theoretical prediction, Eq.45.

perspectives

phase diagram:What is the phase diagram of CF languages (with fields)?Where are human languages?Is this robust in merge grammars? (c.f. Piatelli-Palmarini & Vitiello)Is there a language that parses foldable proteins?

perspectives

semantics: syntax isn't everything..

e.g. who is 'he' in this dialogue: 1

Alice: I'm leaving you. Bob: Who is he?!

Is there a physical approach to semantics? c.f. lambda calculus, proof nets, ...

¹ from S Pinker, The Language Instinct

conclusions

- complex systems can be generative
- natural language as a model system (compositional and hierarchical)
- context-free grammars define a simple model for these properties
- ensemble of grammars = random language model
- RLM has a glass transition
- the statistical mechanical problem is not trivial, but not intractable

Mathematical linguistics has been around for 60 years.

It's time for physical linguistics!

(numerics) Phys. Rev. Lett 2019 (theory) J.Phys A 2019

Thanks to:

Remi Monasson, Jorge Kurchan, Francesco Zamponi, Guilhem Semerjian, Pierfrancesco Urbani, Giorgio Parisi