Title: Faster quantum and classical SDP approximations for quadratic binary optimization

Speakers: Richard Kueng

Series: Perimeter Institute Quantum Discussions

Date: October 28, 2019 - 2:00 PM

URL: http://pirsa.org/19100088

Abstract: We give a quantum speedup for solving the canonical semidefinite programming relaxation for binary quadratic optimization. The class of relaxations for combinatorial optimization has so far eluded quantum speedups. Our methods combine ideas from quantum Gibbs sampling and matrix exponent updates. A de-quantization of the algorithm also leads to a faster classical solver. For generic instances, our quantum solver gives a nearly quadratic speedup over state-of-the-art algorithms.

This is joint work with Fernando Brandao (Caltech) and Daniel Stilck Franca (QMATH, Copenhagen).

Pirsa: 19100088 Page 1/59

Faster quantum and classical SDP approximations for quadratic binary optimization

arXiv:1909.04613

F.G.S.L. Brandão^{1,2}, R. Kueng^{1,2} and D. Stilck França³

¹Department of Computing + Mathematical Sciences (CMS) California Institute of Technology

²Institute for Quantum Information and Matter (IQIM)
California Institute of Technology

³QMATH, Department of Mathematical Sciences University of Copenhagen

October 28, 2019

Caltech

quantum SDP speedups

Richard Küng

Marivation

The problem

Mesa-algorithm

- Optimization =>
- : Clobe submitution
- iii Hamiltonian Updati

Runtime analysi

Convergence

Classical runtime

Quantum runtim

Summan

Table of Contents

- Motivation
- 2 The problem
- Meta-algorithm
 - i. Optimization ⇒ feasibility
 - ii. Gibbs substitution
 - iii. Hamiltonian Updates
- A Runtime analysis Convergence Classical runtime Quantum runtime
- Summary

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

- i. Optimization => feasibility
- ii. Gibbs substitution
- 14 Breaker Hardes

Runtime analysi

Convergence

Classical runtime

Quantum runtime

Summan

Caltech **Table of Contents** quantum SDP speedups Motivation Richard Küng Motivation i. Optimization => i. Optimization ⇒ feasibility feasibility ii. Gibbs substitution iii. Hamiltonian Updates Classical runtime Quantum runtime

Pirsa: 19100088 Page 4/59

Feynman: simulate microscopic systems quantum chemistry, field theories, ... prepare Gibbs states

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

i. Optimization ==

ii. Gibbs substitution

iii. Hamiltonian Update

Runtime analysi

Convergence

Classical runtime

Quantum runtime

Summary

Pirsa: 19100088 Page 5/59

Feynman: simulate microscopic systems quantum chemistry, field theories, ... prepare Gibbs states

Shor: solve expensive computing problems factoring, discrete logarithm

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

i. Optimization =>

II Chia substitution

III Mamiltonian Undat

Runtime analysis

Convergence

Classical runtime

Quantum runtime

Summary

Pirsa: 19100088 Page 6/59

Feynman: simulate microscopic systems quantum chemistry, field theories, ... prepare Gibbs states

Shor: solve expensive computing problems factoring, discrete logarithm

Grover: search data bases

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

i. Optimization =>

5 Chle substitution

- 11 - Town to Harden

Runtime analysis

Convergence

Classical runtime

Quantum runtime

Summary

Feynman: simulate microscopic systems quantum chemistry, field theories, ... prepare Gibbs states

Shor: solve expensive computing problems factoring, discrete logarithm

Grover: search data bases

Brandão & Svore: solve (certain) optimization problems quicker

linear programming, certain SDPs

here: SDP relaxations for binary quadratic optimization

Caltech

quantum SDP speedups

Richard Küng

Motivation

Pirsa: 19100088 Page 8/59

Feynman: simulate microscopic systems

quantum chemistry, field theories, ...

prepare Gibbs states

Shor: solve expensive computing problems

factoring, discrete logarithm

Grover: search data bases

Brandão & Svore: solve (certain) optimization problems quicker

linear programming, certain SDPs

here: SDP relaxations for binary quadratic optimization

- ⇒ CUTNORM (MAXCUT)
- ⇒ community detection
- ⇒ semi-discrete matrix factorization

Underlying idea

Embed quantum simulation as fast subroutine into powerful classical solvers.

Caltech

quantum SDP speedups

Richard Küng

Motivation

Table of Contents

- Motivation
- 2 The problem
- Meta-algorithm
 - i. Optimization ⇒ feasibility
 - ii. Gibbs substitution
 - iii. Hamiltonian Updates
- Runtime analysis
 Convergence
 Classical runtime
 Quantum runtime
- Summary

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Mera-algorithm

i. Optimization =>

ii. Gibbs substitution

iii. Hamiltonian Update

Runtime analysis

Convergence

Classical runtime

Quantum runtime

Summary

Convex optimization problems

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

i, Optimization => feasibility

ii. Gibbs substitution

iii. Hamiltonian Update

Runtime analysi

Convergence

Classical runtime

Quantum runtim

Summary

 $\begin{array}{ll}
\text{maximize} & f(x) \\
\text{subject to} & x \in C_1 \cap \cdots \cap C_m
\end{array}$

convex if C_i are convex sets and f is concave function convex problems are (often) computationally tractable

Convex optimization problems

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

i. Optimization =>

a Clibbs substitution

iii. Hamiltonian Update

Runtime analysi

Convergence

Classical runtime

Quantum runtim

Summary

 $\max_{\mathbf{x}} \text{maximize} \quad f(\mathbf{x})$

subject to $x \in C_1 \cap \cdots \cap C_m$

convex if C_i are convex sets and f is concave function convex problems are (often) computationally tractable general purpose solvers are slow

Pirsa: 19100088 Page 13/59

Binary quadratic optimization

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

i. Optimization =>

ii. Gibbs substitution

iii. Hamiltonian Update

Runtime analysis

Convergence

Classical runtime

Classical Paris

Quantum runtimo

Summary

captures many important problems:

- i Ising model and spin glasses
- ii community detection

Binary quadratic optimization

Caltech

quantum SDP speedups

Richard Küng

Mativation

The problem

Meta-algorithm

i. Optimization =>

ii. Gibbs substitution

iii. Hamiltonian Updati

Runtime analysis

Convergence

Classical runtime

Quantum runtimo

Summary

captures many important problems:

- i Ising model and spin glasses
- ii community detection
- iii MAXCUT and CUTNORM

Binary quadratic optimization

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

i, Optimization => feasibility

ii. Gibbs substitution

iii. Hamiltonian Update

Runtime analysis

Convergence

lassical runtime

Quantum runtimo

ummarv

captures many important problems:

- i Ising model and spin glasses
- ii community detection
- iii MAXCUT and CUTNORM
- \Rightarrow NP-hard to solve in worst case

SDP relaxation

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

i. Optimization => feasibility

ii. Gibbs substitution

Convergence

Classical runtime

Quantum runtime

Summary

 $\underset{\mathbf{x} \in \mathbb{R}^n}{\operatorname{maximize}} \operatorname{tr} (\mathbf{A} \mathbf{x} \mathbf{x}^*)$

subject to $x \in \{\pm 1\}^n$

 $\max_{\boldsymbol{X} \in \mathbb{S}^n} \operatorname{tr} \left(\boldsymbol{A} \, \boldsymbol{X} \right)$

subject to $\operatorname{diag}(X) = 1$

 $X \succeq 0$

 $\operatorname{rank}(X)=1$

SDP relaxation

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

i. Optimization => feasibility

ii. Gibbs substitution

iii. Hamiltonian Update

Runtime analysi

Convergence

Classical runtime

Quantum runtime

Summary

$$\underset{\mathbf{x}\in\mathbb{R}^n}{\text{maximize}} \quad \operatorname{tr}\left(\mathbf{A} \ \mathbf{x}\mathbf{x}^*\right)$$

subject to $x \in \{\pm 1\}^n$

convex relaxation:

$$f(X) = tr(A X)$$
 is linear

 $X \in \mathcal{C}_1 \cap \mathcal{C}_2$ where

 $\mathcal{C}_1 = \{ oldsymbol{X} : \operatorname{diag}(oldsymbol{X}) = 1 \}$ affine subspace

 $\mathcal{C}_2 = \{ X : X \succeq 0 \}$ convex cone

actually a semidefinite program (SDP)

 $\max_{\boldsymbol{X} \in \mathbb{S}^n} \operatorname{tr}(\boldsymbol{A} \boldsymbol{X})$

subject to $\operatorname{diag}(X) = 1$

 $X \succeq 0$

rank(X) = 1

Fundamental problem for this talk

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

i. Optimization =>

ii. Gibbs substitution

iii. Hamiltonian Update

Runtime analysis

Convergence

feasibility

Classical runtime

Quantum runtime

Summary

Fundamental problem for this talk

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

i. Optimization => feasibility

a Cibbs substitution

ili. Hamiltonian Update

Runtime analysis

Convergence

Classical runtime

Ougetum custime

$$(X \in C_1)$$

 $(X \in S)$

Table of Contents

- Motivation
- The problem
- Meta-algorithm
 - i. Optimization ⇒ feasibility
 - ii. Gibbs substitution
 - iii. Hamiltonian Updates
- A Runtime analysis

 Convergence

 Classical runtime

 Quantum runtime
- Summary

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

- i. Optimization =>
- II. Gibbs substitution
- iii. Hamiltonian Updat

Runtime analys

Convergence

Classical runtime

Quantum runtime

Summary

Strategy

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

i. Optimization =>

ii. Gibbs substitution

iii. Hamiltonian Update

Runtime analysi

Convergence

Classical runtime

Quantum runtime

Summary

phase I: optimization problem ⇒ feasibility problem
phase II: develop quantum-inspired meta-algorithm

quantum boost: use quantum subroutines

inspiration: matrix multiplicative weights and mirror descent

Strategy

Caltech

quantum SDP speedups

Richard Küng

Activation

The problem

Meta-algorithm

i. Optimization =>

a. Gibbs substitution

iii. Hamiltonian Update

Runtime analysi

Convergence

Classical runtime

Quantum runtime

Summary

phase I: optimization problem ⇒ feasibility problem
phase II: develop quantum-inspired meta-algorithm

quantum boost: use quantum subroutines

inspiration: matrix multiplicative weights and mirror descent

Optimization ⇒ feasibility

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

i, Optimization =>

ii. Gibbs substitution

iii. Hamiltonian Update

Runtime analysis

Convergence

Classical runtime

Quantum runtime

Summary

objective function $f(X) = \operatorname{tr}\left(\frac{1}{\|A\|}AX\right)$ is linear and obeys

$$|f(X)| \le \frac{1}{\|A\|} \|A\| \|X\|_1 = 1 \text{ for all } X \succeq 0, \text{ } tr(X) = 1.$$

instead of optimizing f(X) directly, choose $\lambda \in [-1,1]$ and ask: is there a feasible X that obeys $f(X) \leq \lambda$?

Optimization ⇒ feasibility

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

easibility

I. Gibbs substitution

iii. Hamiltonian Update

Runtime analysi

Convergence

Classical runtime

Quantum runtime

ummary

objective function $f(X) = \operatorname{tr}\left(\frac{1}{\|A\|}AX\right)$ is linear and obeys

$$|f(X)| \le \frac{1}{\|A\|} \|A\| \|X\|_1 = 1$$
 for all $X \succeq 0$, $tr(X) = 1$.

instead of optimizing f(X) directly, choose $\lambda \in [-1,1]$ and ask: is there a feasible X that obeys $f(X) \leq \lambda$?

Binary search

 $\mathcal{O}(2\log(1/\epsilon)) = \tilde{\mathcal{O}}(1)$ questions (with varying λ) nail down $f(\mathbf{X}_{\sharp}) \pm \epsilon$

Reformulate feasibility problem

task: for $\tilde{\mathbf{A}} = \frac{1}{||\mathbf{A}||} \mathbf{A}$ and $\lambda \in [-1,1]$ solve

find
$$X \in \mathbb{S}^n$$

subject to $\operatorname{tr} \left(\tilde{A} X \right) \leq \lambda$
 $\operatorname{diag}(X) = \frac{1}{n}I$
 $\operatorname{tr}(X) = 1, X \succeq 0$

quantum SDP speedups

Richard Küng

Motivation

The problem

 $(X \in A_{\lambda})$

 $(X \in \mathcal{D}_n)$

 $(X \in S_n)$

Meta-algorithm

Optimization =>

il. Gibbs substitution

iii. Hamiltonian Updati

Runtime analysi

Convergence

Classical runtime

Quantum runtime

Summary

Quantum-inspired change of variables

$$\mathbf{X} = \rho_{\mathbf{H}} = \frac{\exp(-\mathbf{H})}{\operatorname{tr}(\exp(-\mathbf{H}))} \in \mathcal{S}_n$$
 (Gibbs state)

Reformulate feasibility problem

task: for $\tilde{\mathbf{A}} = \frac{1}{\|\mathbf{A}\|}\mathbf{A}$ and $\lambda \in [-1,1]$ solve

find
$$X \in \mathbb{S}^n$$

subject to $\operatorname{tr} \left(\tilde{A} X \right) \leq \lambda$
 $\operatorname{diag}(X) = \frac{1}{n}I$
 $\operatorname{tr}(X) = 1, X \succeq 0$

- \mathcal{A}_{λ} is half-space
- \mathcal{D}_n is affine subspace
- \bullet \mathcal{S}_n is the set of all density matrices

Quantum-inspired change of variables

$$\mathbf{X} = \rho_{\mathbf{H}} = \frac{\exp(-\mathbf{H})}{\operatorname{tr}(\exp(-\mathbf{H}))} \in \mathcal{S}_n$$
 (Gibbs state)

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

 $(X \in A_{\lambda})$

 $(X \in \mathcal{D}_n)$

 $(X \in S_n)$

Meta-algorithm

i. Optimization =>

Cibbs substitution

iii. Hamiltonian Update

Runtime analysi

Convergence

Classical runtime

Quantum runtime

Summan

Hamiltonian Updates

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

1. Optimization =>

ii. Gibbs substitution

iii. Hamiltonian Updater

Runtime analys

Classical runtime

umman.

 $m{X}\mapsto m{
ho_H}=rac{\exp(-m{H})}{\operatorname{tr}(\exp(-m{H})}$ automatically ensures $m{X}\in\mathcal{S}_n$

find $\mathbf{H} \in \mathbb{S}^n$

subject to $\operatorname{tr}(\tilde{\mathbf{A}} \rho_{\mathbf{H}}) \leq \lambda$

$$\operatorname{diag}(\rho_H) = \frac{1}{n}I$$

$$(\rho_H \in \mathcal{A}_{\lambda})$$

$$(\rho_H \in \mathcal{D}_n)$$

Hamiltonian Updates:

lacktriangledown start at infinite temperature, i.e. $oldsymbol{H}=\mathbf{0}$

afind separating hyperplane P and update $H \leftarrow H + \epsilon P$

Hamiltonian Updates

$$m{X}\mapsto m{
ho_H}=rac{\exp(-m{H})}{\operatorname{tr}(\exp(-m{H})}$$
 automatically ensures $m{X}\in\mathcal{S}_n$

find
$$\boldsymbol{H} \in \mathbb{S}^n$$

subject to $\operatorname{tr}(\tilde{\boldsymbol{A}} \rho_{\boldsymbol{H}}) \leq \lambda$
 $\operatorname{diag}(\rho_{\boldsymbol{H}}) = \frac{1}{n}\boldsymbol{I}$

$$(\rho_H \in \mathcal{A}_{\lambda})$$

$$(\rho_H \in \mathcal{D}_n)$$

Hamiltonian Updates:

- lacktriangledown start at infinite temperature, i.e. $oldsymbol{H}=\mathbf{0}$
- ② check if $\rho_H \in \mathcal{A}_{\lambda}$ and $\rho_H \in \mathcal{D}_n$

if true we are done else update **H** to penalize infeasible directions^a

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

i Optimization ==>

I Clabs substitution

iii. Hamiltonian Update

Runtime analysi

Convergence

Classical runtime

Quantum runtime

Summar

^{**} find separating hyperplane P and update $H \leftarrow H + \epsilon P$

Hamiltonian Updates

$$m{X}\mapsto
ho_{m{H}}=rac{\exp(-m{H})}{\operatorname{tr}(\exp(-m{H})}$$
 automatically ensures $m{X}\in\mathcal{S}_n$

find
$$H \in \mathbb{S}^n$$

subject to $\operatorname{tr}(\tilde{A} \rho_H) \leq \lambda$
 $\operatorname{diag}(\rho_H) = \frac{1}{n}I$

$$(\rho_H \in \mathcal{A}_{\lambda})$$

$$(\rho_H \in \mathcal{D}_n)$$

Hamiltonian Updates:

- \odot start at infinite temperature, i.e. H=0
- ② check if $\rho_H \in \mathcal{A}_{\lambda}$ and $\rho_H \in \mathcal{D}_n$ if true we are done

else update **H** to penalize infeasible directions^a

3 loop (at most) T times

*find separating hyperplane P and update $H \leftarrow H + \epsilon P$

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

Optimization =>

ii. Gibbs substitution

iii. Hamiltonian Updates

Runtime analys

Convergence

Classical runtime

Quantum rumime

Cumman

Pirsa: 19100088 Page 33/59

Pirsa: 19100088 Page 34/59

Pirsa: 19100088 Page 35/59

Table of Contents

- Motivation
- The problem
- Meta-algorithm
 - i. Optimization ⇒ feasibility
 - ii Gibbs substitution
 - iii. Hamiltonian Updates
- A Runtime analysis Convergence Classical runtime Quantum runtime
- Summary

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

- i. Optimization =
- il. Gibbs substitution
- iii. Hamiltonian Update

Runtime analysis

Convergence

Classical runtime

Quantum runtime

Summary

Pirsa: 19100088 Page 37/59

Hamiltonian Updates: convergence

Caltech

quantum SDP speedups

Richard Küng

Activation .

The problem

Meta-algorithm

feasibility

ii. Gobs substitution

m Hamiltonian Update

Runtime analysi

Convergence

Classical runtime

Quantum runtime

Summary

Theorem (Brandão, RiK, França)

Hamiltonian Updates finds an approximately feasible point after (at most) $T = \lceil 16 \log(n)/\epsilon^2 \rceil + 1 = \tilde{\mathcal{O}}(1)$ steps. Otherwise, the problem is infeasible.

Hamiltonian Updates: convergence

Caltech

quantum SDP speedups

Richard Küng

Activation

The problem

Meta-algorithm

i. Optimization =>

Gibbs substitution

III. Hamiltonian Update

Runtime analysi

Convergence

Classical runtime

Quantum runtim

Summary

Theorem (Brandão, RiK, França)

Hamiltonian Updates finds an approximately feasible point after (at most) $T = \lceil 16 \log(n)/\epsilon^2 \rceil + 1 = \tilde{\mathcal{O}}(1)$ steps. Otherwise, the problem is infeasible.

proof idea:

• relative entropy between $\rho_0 = \frac{1}{n}I$ and any feasible point ρ^* is $\leq \log(n)$

Hamiltonian Updates: convergence

Caltech

quantum SDP speedups

Richard Küng

Activation

The problem

Vieta-algorithm

Optimization =>

Gibbs substitution

III Hamiltonian Updati

Runtime analysi

Convergence

Classical runtime

Duantum runtime

Summan

Theorem (Brandão, RiK, França)

Hamiltonian Updates finds an approximately feasible point after (at most) $T = \lceil 16 \log(n)/\epsilon^2 \rceil + 1 = \tilde{\mathcal{O}}(1)$ steps. Otherwise, the problem is infeasible.

proof idea:

- relative entropy between $\rho_0 = \frac{1}{n}I$ and any feasible point ρ^* is $\leq \log(n)$
- show that each iteration makes constant progress in relative entropy:

$$S(\rho^* || \rho_{t+1}) - S(\rho^* || \rho_t) \le -\frac{\epsilon^2}{16}$$

 \Rightarrow convergence after (at most) T steps, or $S(
ho^* \|
ho_T) < 0$

Caltech

quantum SDP speedups

Richard Küng

lotivation

The problem

Meta-algorithm

1. Optimization =>

ii. Glbbs substitution

iii. Hamiltonian Update

Runtime analysis

Convergence

Classical runtime

Quantum runtime

Summan

• Hamiltonian Updates solves feasibility problem in $\mathcal{O}(\log(n)/\epsilon^2) = \tilde{\mathcal{O}}(1)$ steps

Caltech

quantum SDP speedups

Richard Küng

• Hamiltonian Updates solves feasibility problem in $\mathcal{O}(\log(n)/\epsilon^2) = \tilde{\mathcal{O}}(1)$ steps

each step requires three subroutines:

(i) compute $\rho_H = \frac{\exp(-H)}{\operatorname{tr}(\exp(-H))}$

(ii) $\rho_H \in \mathcal{A}_{\lambda}$: check $\operatorname{tr}(\tilde{A} \rho_H) \leq \lambda$; output $P = \tilde{A}$

(iii) $\rho_H \in \mathcal{D}_n$: check $\operatorname{diag}(\rho_H) = \frac{1}{n}\mathbf{1}$; output $P = \sum_i \mathbb{I}\left\{\left\langle \mathbf{e}_i, \rho_H \mathbf{e}_i \right\rangle > \frac{1}{n}\right\} \mathbf{e}_i \mathbf{e}_i^t$

Caltech

quantum SDP speedups

Richard Küng

- Hamiltonian Updates solves feasibility problem in $\mathcal{O}(\log(n)/\epsilon^2) = \tilde{\mathcal{O}}(1)$ steps
- each step requires three subroutines:

(i) compute
$$\rho_H = \frac{\exp(-H)}{\operatorname{tr}(\exp(-H))}$$

(ii) $\rho_H \in \mathcal{A}_{\lambda}$: check $\operatorname{tr}(\tilde{A} \rho_H) \leq \lambda$; output $P = \tilde{A}$

(iii) $\rho_H \in \mathcal{D}_n$: check $\operatorname{diag}(\rho_H) = \frac{1}{n}\mathbf{1}$; output $P = \sum_i \mathbb{I}\left\{\langle \mathbf{e}_i, \rho_H \mathbf{e}_i \rangle > \frac{1}{n}\right\} \mathbf{e}_i \mathbf{e}_i^t$

naive cost:

(i) $\mathcal{O}(n^3)$

(ii) $\mathcal{O}(ns)$ $s = (\text{row})\text{sparsity}(\tilde{\mathbf{A}})$

(iii) $\mathcal{O}(n)$

Caltech

quantum SDP speedups

Richard Küng

- Hamiltonian Updates solves feasibility problem in $\mathcal{O}(\log(n)/\epsilon^2) = \tilde{\mathcal{O}}(1)$ steps
- each step requires three subroutines:
 - (i) compute $\rho_H = \frac{\exp(-H)}{\operatorname{tr}(\exp(-H))}$
 - (ii) $\rho_H \in \mathcal{A}_{\lambda}$: check $\operatorname{tr}(\tilde{A} \rho_H) \leq \lambda$; output $P = \tilde{A}$
 - (iii) $\rho_H \in \mathcal{D}_n$: check $\operatorname{diag}(\rho_H) = \frac{1}{n}\mathbf{1}$; output $P = \sum_i \mathbb{I}\left\{\langle \mathbf{e}_i, \rho_H \mathbf{e}_i \rangle > \frac{1}{n}\right\} \mathbf{e}_i \mathbf{e}_i^t$
- naive cost:
 - (i) $\mathcal{O}(n^3)$
 - (ii) $\mathcal{O}(ns)$ $s = (\text{row})\text{sparsity}(\tilde{\mathbf{A}})$
 - (iii) $\mathcal{O}(n)$
- naive total cost: $\tilde{\mathcal{O}}(n^4s)$ (not very impressive yet)

fact: Hamiltonian updates is designed to be robust

 \Rightarrow implementing subroutines up to accuracy ϵ still yields an approximately feasible solution (and correctly flags infeasibility)

Caltech

quantum SDP speedups

Richard Küng

lotivation

The problem

Meta-algorithm

Optimization

ii. Gibbs substitution

iii. Hamiltonian Update

Runtime analysi

Convergence

Classical runtime

Quantum runtime

Summan

Pirsa: 19100088 Page 45/59

fact: Hamiltonian updates is designed to be robust

 \Rightarrow implementing subroutines up to accuracy ϵ still yields an approximately feasible solution (and correctly flags infeasibility)

classical boost:
$$\exp(-H) \simeq \sum_{k=0}^{\ell} \frac{H^k}{k!}$$
, $\ell = \mathcal{O}(\log(n)/\epsilon) = \tilde{\mathcal{O}}(1)$

Caltech

quantum SDP speedups

Richard Küng

otivation

The problem

Meta-algorithm

Optimization =>

ii. Gbbs substitution

III Hamiltonian Update

Runtime analysis

Convergence

Classical runtime

Quantum runtime

Summar

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

i. Optimization =>

Gibbs substitution

The State of Lindson

Runtime analysis

Convergence

Classical runtime

cantum runtime

Summary

fact: Hamiltonian updates is designed to be robust

 \Rightarrow implementing subroutines up to accuracy ϵ still yields an approximately feasible solution (and correctly flags infeasibility)

classical boost: $\exp(-H) \simeq \sum_{k=0}^{\ell} \frac{H^k}{k!}$, $\ell = \mathcal{O}(\log(n)/\epsilon) = \tilde{\mathcal{O}}(1)$

Theorem (Brandão, RiK, França; 2019)

Hamiltonian Updates approximately solves binary quadratic SDP relaxations in classical runtime $\mathcal{O}\left(n^2s\log(n)/\epsilon^{12}\right) = \tilde{\mathcal{O}}(n^2s)$, where $s = (row)sparsity(\boldsymbol{A})$.

maximize
$$\operatorname{tr}\left(\frac{1}{\|A\|}AX\right)$$

subject to $\operatorname{diag}(X) = 1$
 $X \succeq 0$.

Caltech

quantum SDP speedups

Richard Küng

lotivation

The problem

Meta-algorithm

Optimization =>

Gibbs substitution

iii. Hamiltonian Updati

Runtime analysis

Convergence

Classical runtime

uantum runtime

Summan

fact: Hamiltonian updates is designed to be robust

 \Rightarrow implementing subroutines up to accuracy ϵ still yields an approximately feasible solution (and correctly flags infeasibility)

classical boost: $\exp(-H) \simeq \sum_{k=0}^{\ell} \frac{H^k}{k!}$, $\ell = \mathcal{O}(\log(n)/\epsilon) = \tilde{\mathcal{O}}(1)$

Theorem (Brandão, RiK, França; 2019)

Hamiltonian Updates approximately solves binary quadratic SDP relaxations in classical runtime $\mathcal{O}\left(n^2s\log(n)/\epsilon^{12}\right) = \tilde{\mathcal{O}}(n^2s)$, where $s = (row)sparsity(\mathbf{A})$.

maximize $\operatorname{tr}\left(\frac{1}{\|A\|}AX\right)$ subject to $\operatorname{diag}(X) = 1$ $X \succeq 0$.

- 1 best existing general algorithm: $\tilde{\mathcal{O}}(n^{2.5}s)$
- 2 approx. discrepancy: $\epsilon n \|A\|$ vs. $\epsilon \|A\|_{\ell_1}$
- g favorable for generic problem instances
- @ no speedup for MAXCUT

fact: Hamiltonian updates is designed to be robust

 \Rightarrow implementing subroutines up to accuracy ϵ still yields an approximately feasible solution (and correctly flags infeasibility)

classical boost:
$$\exp(-\mathbf{H}) \simeq \sum_{k=0}^{\ell} \frac{\mathbf{H}^k}{k!}$$
, $\ell = \mathcal{O}(\log(n)/\epsilon) = \tilde{\mathcal{O}}(1)$

Theorem (Brandão, RiK, França; 2019)

Hamiltonian Updates approximately solves binary quadratic SDP relaxations in classical runtime $\mathcal{O}\left(n^2s\log(n)/\epsilon^{12}\right) = \tilde{\mathcal{O}}(n^2s)$, where $s = (row)sparsity(\mathbf{A})$.

maximize
$$\operatorname{tr}\left(\frac{1}{\|A\|}AX\right)$$

subject to $\operatorname{diag}(X) = 1$
 $X \succeq 0$.

- **1** best existing general algorithm: $\tilde{\mathcal{O}}(n^{2.5}s)$
- 2 approx. discrepancy: $\epsilon n \|A\|$ vs. $\epsilon \|A\|_{\ell_1}$
- favorable for generic problem instances
- @ no speedup for MAXCUT

Caltech

quantum SDP speedups

Richard Küng

Activation

The problem

Meta-algorithm

¿ Optimization ⇒

Clabs substitution

iii Hamiltonian Updati

Runtime analysis

Convergence

Classical runtime

Duantum runtime

Summan

Hamiltonian updates: quantum implementation

classical bottleneck: compute Gibbs states $ho_H = \frac{\exp(-H)}{\operatorname{tr}(\exp(-H))}$

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

i. Optimization == feasibility

ii. Gibbs substitution

iii. Hamiltonian Update

Runtime analysi

Convergence

Classical runtime

Quantum runtime

Summary

Hamiltonian updates: quantum implementation

Caltech

quantum SDP speedups

Richard Küng

Motivation

 $\tilde{\mathcal{O}}(\sqrt{ns}s^{o(1)})$

 $\mathcal{O}(1/\epsilon^2)$ copies

 $\mathcal{O}(n/\epsilon^2)$ copies

The problem

Meta-algorithm

feasibility

ii. Gibbs substitution

Benefit History and State

Convergence

Classical runtime

Quantum runtime

Summary

classical bottleneck: compute Gibbs states $\rho_H = \frac{\exp(-H)}{\operatorname{tr}(\exp(-H))}$ quantum speedup:

prepare copies of ρ_H on quantum computer estimate $\operatorname{tr}(\tilde{A}\;\rho_H)$ via phase estimation estimate $\operatorname{diag}(\rho_H)$ via computational basis measurements

Theorem (Brandão, RiK, França; 2019)

Hamiltonian Updates approximately solves binary quadratic SDP relaxations in quantum runtime $\tilde{\mathcal{O}}(n^{1.5}(\sqrt{s})^{1+o(1)})$.

Hamiltonian updates: quantum implementation

Caltech

quantum SDP speedups

Richard Küng

Motivation

 $\tilde{\mathcal{O}}(\sqrt{ns}s^{o(1)})$

 $\mathcal{O}(1/\epsilon^2)$ copies

 $\mathcal{O}(n/\epsilon^2)$ copies

The problem

Meta-algorithm

2 Chin mhairming

s. Gibbs substitution

Runtime analysis

Convergence

Classical runtime

Quantum runtime

Summary

classical bottleneck: compute Gibbs states $\rho_H = \frac{\exp(-H)}{\operatorname{tr}(\exp(-H))}$ quantum speedup:

prepare copies of ρ_H on quantum computer estimate $\operatorname{tr}(\tilde{A} \rho_H)$ via phase estimation estimate $\operatorname{diag}(\rho_H)$ via computational basis measurements

Theorem (Brandão, RiK, França; 2019)

Hamiltonian Updates approximately solves binary quadratic SDP relaxations in quantum runtime $\tilde{\mathcal{O}}(n^{1.5}(\sqrt{s})^{1+o(1)})$.

- first quantum speedup for important SDP class
- ${\color{red} 2}$ beats classical runtimes $\tilde{\mathcal{O}}(n^2s)$ and $\tilde{\mathcal{O}}(n^{2.5}s)$
- 3 classical access to (approx.) optimal Hamiltonian ⇒ data processing

Details about quantum subroutine

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

Optimization =>

ii. Glbbs substitution

iii. Hamiltonian Update

Runtime analys

Convergence

Classical runtime

Quantum runtime

Summary

important design feature: Hamiltonians are very structured: $\mathbf{H} = \alpha \tilde{\mathbf{A}} + \beta \mathbf{D}$, $\alpha, \beta = \mathcal{O}(\log(n)/\epsilon)$

Details about quantum subroutine

Caltech

quantum SDP speedups

Richard Küng

Activation

The problem

Meta-algorithm

. Optimization =>

Glaba substitution

II Mamiltonian Hadas

Runtime analysi

Convergence

Classical runtime

ierman/

important design feature: Hamiltonians are very structured:

$$\mathbf{H} = \alpha \tilde{\mathbf{A}} + \beta \mathbf{D}, \ \alpha, \beta = \mathcal{O}(\log(n)/\epsilon)$$

- use [Poulin, Wojcan; 2009] to reduce task of preparing ρ_H to simulating time evolution $(\mathcal{O}(\sqrt{n})$ invocations)
- use [Childs, Wiebe; 2012] to split up time evolution (negligible overhead)
- (3) [Low; 2019]: implementing $\exp(it\alpha\tilde{A})$ costs $\tilde{\mathcal{O}}(\sqrt{s}^{1+o(1)})$
- (4) [Prakash; 2014] implementing $\exp(it\beta \mathbf{D})$ with quantum RAM costs $\tilde{\mathcal{O}}(n)$
- \Rightarrow total cost: $\tilde{\mathcal{O}}(n^{1.5}\sqrt{s}^{1+o(1)})$

Table of Contents

quantum SDP speedups

Caltech

Richard Küng

Motivation

The problem

Mera-algorithm

i. Optimization => feasibility

a Cibbs substitution

iii. Hamiltonian Update

Runtime analysis

Convergence

Classical runtime

Quantum runtime

Summary

- Motivation
- The problem
- Meta-algorithm
 - i. Optimization ⇒ feasibility
 - ii. Gibbs substitution
 - iii. Hamiltonian Updates
- Runtime analysis Convergence Classical runtime Quantum runtime
- Summary

Conclusion

Caltech

quantum SDP speedups

Richard Küng

Motivation

The problem

Meta-algorithm

i. Optimization =>

ii. Gibbs substitution

iii, Hamiltonian Update

Runtime analysis

Convergence

Classical runtime

Quantum runtim

Summary

we established speedups for important problem class:

$$\begin{array}{ll}
\text{maximize} & \text{tr}(A X) \\
X \in \mathbb{S}^n & \text{diag}(X) = \frac{1}{n} \mathbf{1}
\end{array}$$

Conclusion

Caltech

quantum SDP speedups

Richard Küng

· PH

Summary

we established speedups for important problem class:

maximize
$$\operatorname{tr}(AX)$$

subject to $\operatorname{diag}(X) = \frac{1}{n}\mathbf{1}$
 $\operatorname{tr}(X) = 1, X \succeq \mathbf{0}$

our strategy:

- replace optimization by a sequence of feasibility problems
- (ii) change of variables: $X \leftarrow \rho_H = \frac{\exp(-H)}{\operatorname{tr}(\exp(-H))}$
- (iii) iteratively penalize infeasible directions by Hamiltonian Updates $\mathbf{H} \leftarrow \mathbf{H} + \epsilon \mathbf{P}$
- (iv) boost runtime by preparing each ho_H on quantum computer

Conclusion

Caltech

quantum SDP speedups

Richard Küng

· PH

Summary

we established speedups for important problem class:

- replace optimization by a sequence of feasibility problems
- (ii) change of variables: $X \leftarrow \rho_H = \frac{\exp(-H)}{\operatorname{tr}(\exp(-H))}$
- (iii) iteratively penalize infeasible directions by Hamiltonian Updates $\mathbf{H} \leftarrow \mathbf{H} + \epsilon \mathbf{P}$
- (iv) boost runtime by preparing each ho_H on quantum computer

our result: we obtain approximate solutions faster than existing approaches: $\tilde{\mathcal{O}}(n^2s)$ (classical) and $\tilde{\mathcal{O}}(n^{1.5}\sqrt{s}^{1+o(1)})$ (quantum) vs. $\tilde{\mathcal{O}}(n^{2.5}s)$ (classical)

Outlook

Caltech

lacktriangle improve runtime scaling in approximation accuracy ϵ

Richard Küng

quantum SDP speedups

implementation on near-tearm devices (better Gibbs samplers)

Motivation

improve existing general-purpose quantum SDP solvers

The property

- adapt meta-algorithm to other important convex optimization problems:
- Weta-algorithm

semi-discrete matrix factorization [RiK, Tropp; 2019]

ii. Gibbs substitution

quantum state tomography [Gross 2011]

- Runtime analysi
- 5 take-home message: quantum speedups for important optimization problems are a new and exciting development. There is still a lot to uncover!
- Convergence

Quantum runtime

Summary

Thank you!