Title: Faster quantum and classical SDP approximations for quadratic binary optimization
Speakers: Richard Kueng

Series. Perimeter Institute Quantum Discussions

Date: October 28, 2019 - 2:00 PM

URL.: http://pirsa.org/19100088

Abstract: We give a quantum speedup for solving the canonical semidefinite programming relaxation for binary quadratic optimization. The class of
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Prospective applications of quantum computers

Feynman: simulate microscopic systems
quantum chemistry, field theories, ...
prepare Gibbs states

Shor: solve expensive computing problems
factoring, discrete logarithm

Grover: search data bases
Brand3o & Svore: solve (certain) optimization problems quicker

linear programming, certain SDPs
here: SDP relaxations for binary quadratic optimization

_. CuTNORM (MAXCUT)
.. community detection
. semi-discrete matrix factorization

Underlying idea

Embed quantum simulation as fast subroutine into powerful classical solvers.
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maximize f(x)
X

subject to x € C1 M-~ mCn

convex if C; are convex sets and f is concave function
convex problems are (often) computationally tractable
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Convex optimization problems

maximize f(x)
X

subject to x €C1N---NCnx

onvex sets and f is concave function
computationally tractable

convex if C; are C
convex problems are (often)

=X general purpose solvers are slow
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maximize (x,A x) = tr(A xx") The problem
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maiglggize (x, A x) = tr(A xx*) The problem

subject to x € {£1}"

captures many important problems:

i Ising model and spin glasses

ii community detection
. MAaxCuT and CUTNORM

— NP-hard to solve in worst case
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maximize tr (A xx™) maximize tr (A X)
x€R" XeSn
subject to  x € {£1}" subject to diag(X) =1 e
X>0

convex relaxation:
f(X) = tr(A X) is linear
X € C; NCa where
C, = {X : diag(X) = 1} affine subspace
G5 = {Xi: X =0} convexicone

actually a semidefinite program (SDP)
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XS
subject to diag(X) = 71 (X e G)

maximize ftr (ﬂ"/lx_uA X )
2L
n
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objective function f(X) = tr (ﬂ%ﬂA X) is linear and obeys
F(X)] < mapllAl X[ =1 for all| X(=101 =1 o

instead of optimizing f(X) directly, choose A € [—1,1] and ask:
i< there a feasible X that obeys f(X) < A7

Binary search

O(2log(1/€)) = O(1) questions (with varying A) nail down f(X;) £ €
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Reformulate feasibility problem

task: for A = ragA and X € [-1,1] solve

find X €S
subject to tr (fl X) < A

diag(X) = =1
tl'(X) — 1, X t 0

Quantum—inspired change of variables

Pirsa: 19100088

exP("'H) = Sn

Caltech

TN
quantum SDF
speedups

Richard Kiing

>
m
~
e

< X
m M
nh O

2=

=
~—

(Gibbs state)

Page 28/59




Reformulate feasibility problem Caltech

task: for Z\ = "—}WA and \ & [_]_’ ]_] solve qm;it:T;’
Richard Kung
find X €S”
subject to tr (fi X) < A (X € Ay) s
diag(X) = =1 (X € D) =
tr(X)-_—l,X>_-0 (X € Sn) '

e A, is half-space
e D, is affine subspace
e S, is the set of all density matrices

Quantum-inspired change of variables

i exp(=H) €S, (Gibbs state)
X = PH = Glexp(—H))
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Hamiltonian Updates

X = py = ﬁ’%&—_’%—) automatically ensures X € S,

find HeS"
subject to tr(A pu) < A (pH € Ay)
diag(pH) = % (pH € Dh)

Hamiltonian Updates:
@ start at infinite temperature, i.e. H = 0

2find separating hyperplane P and update H + H +¢€P

y
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Hamiltonian Updates

__ exp(—H :
X = py= @)(—_gﬁ automatically ensures X € S,

find HeS"
subject to tr(ﬁ pH) < A (pH € Ar)
diag(pn) = = (pH € D))

Hamiltonian Updates:
@ start at infinite temperature, pe—10
@ check if py € A, and pH € Dy

if true we are done

else update H to penalize infeasible directions®

afind separating hyperplane P and update H < H + cP
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Hamiltonian Updates

__ exp(=H .
X = py = ﬁﬁﬂ-_}i‘) automatically ensures X € S,

find HeS"
subject to tr(A pu) < A (pH € AN)
diag(pn) = =1 (PH € Dh)

Hamiltonian Updates:
@ start at infinite temperature, e H=0
@ check if py € Ay and py € Dy

if true we are done
else update H to penalize in

© loop (at most) T times
perplane P and update H « H + eP

feasible directions®

2find separating hy
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Hamiltonian Updates: convergence

T heorem (Brand'a'o, RiK, Franca)

Hamiltonian Updates finds an approximately feasible point after (at most)
T = [16log(n)/€%] + 1 = O(1) steps. Otherwise, the problem is infeasible.
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Theorem (Brand3o, RiK, Franca)

Hamiltonian Updates finds an approximately feasible point after’ (‘?t mo_st)
T = [16log(n)/€*] + 1 = O(1) steps. Otherwise, the problem is infeasible.

proof idea:

o relative entropy between pg = 1/ and any feasible point p* is < log(n)
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Hamiltonian Updates: convergence

Theorem (Brand3o, RiK, Franca)

Hamiltonian Updates finds an approximately feasible point after (at most)
T = [16log(n)/€*] + 1 = O(1) steps. Otherwise, the problem is infeasible.

proof idea:

o relative entropy between pg = =/ and any feasible point o

e show that each iteratio

_. convergence after

p—
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is < log(n)
n makes constant progress in relative entropy:

2
S(p"llpesa) = S(PllP) < ~ 5

(at most) T steps, of S(p*llpT) <O
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e Hamiltonian Updates solves feasibility problem in O(log(n)/€?) = O(1) steps
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e Hamiltonian Updates solves feasibility problem in O(log(n)/€) = O(1) steps

® each step requires three subroutines:
. _H)
(i) compute py = tr?Z::pL—H)) L
i) pr € Ax: check tr(A pn) < A; output = L
((iii) on € D, check diag(pn) = 13; output P =3;1 {(ei,prei) > 7} €i€]
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e Hamiltonian Updates solves feasibility problem in O(log(n)/€) = O(1) steps

e each step requires three subroutines:

: exp(—H
(i) compute pH = Fiep(=R)) |

il : ] ' P=—"A
(i) pu € Ax: check tr(A pn) < A; output L
(iii) pr € Dp: check diag(pn) = 17; output P =31 {(ei, pHei) > 7} €i€]

e naive cost: —
o -
(iii) O(n)
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e Hamiltonian Updates solves feasibility problem in O(log(n)/€?) = O(1) steps
e each step requires three subroutines:
: xp(—H
(i) compute py = ”‘Eej:p(”_’_})) e
i) pr € Ax: check tr(A pn) < A; output = L
((iii) pu € Dp: check diag(pr) = +1; output P = S 1{{ei, puei) > 11 eje]
® paive cost: o
(i) O(n*) L
(i) O(ns) s= (row)sparsity(A)
(iii) O(n)

e naive total cost: O(n*s) (not very impressive yet)
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= implementing subroutines up to accuracy € still yields an approximately
feasible solution (and correctly flags infeasibility)
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feasible solution (and correctly flags infeasibility)

classical boost: exp(—H) =~ i ’—;f,i ¢ = O(log(n)/e) = O(1)
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fact: Hamiltonian updates is designed to be robust TEAE
- . . Richard Kin
— implementing subroutines up to accuracy € still yields an approximately g
feasible solution (and correctly flags infeasibility)
classical boost: exp(—H) ~ Al -%’f- ¢ = O(log(n)/e) = O(1)
Theorem (Brandio, RiK, Franca; 2019)
Hamiltonian Updates approximately solves binary quadratic SDP relaxations in g
classical runtime © (n?slog(n) /e2) = O(n?s), where s = (row)sparsity(A)- ——

maximize tr (“]I%I_IA X )

subject to diag(X) =1
Xe=0.
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Hamiltonian Updates: classical implementation Caltech
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fact: Hamiltonian updates is designed to be robust c;c:m:;ug
— implementing subroutines up to accuracy e still yields an approximately
feasible solution (and correctly flags infeasibility)
classical boost: exp(—H) ~ 5 ’—g— ¢ = O(log(n)/€) = O(1)
Theorem (Brandao, RiK, Franga; 2019)
Hamiltonian Updates approximately solves binary quadratic SDP relaxations in S
classical runtime O (n®slog(n) €)= O(n*s), where s = (row)sparsity(A)- Gt e

@ best existing general algorithm: O(n*>s)
maTiTize (—II%‘TIA X) @ approx. discrepancy: en||A|| vs. €l|Alle
subject to diag(X) =1 © favorable for generic problem instances

X = 0. @ no speedup for MAXCUT
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— implementing subroutines up to accuracy € still yields an approximately
feasible solution (and correctly flags infeasibility)

classical boost: exp(—H) =~ fil %f— ¢ = O(log(n)/e) = O(1)

Theorem (Brandéo, RiK, Franca; 2019)

Hamiltonian Updates approximately solves binary quadratic SDP relaxations in e
25), where s = (row)sparsity(A)- e e

classical runtime O (n?slog(n)/e'?) = O(n
: @ best existing general algorithm: O(n>?s)
quaziizel (WA X) @ approx. discrepancy: en||A|| vs. €[|Alle
subject to diag(X) =1 © favorable for generic problem instances
X = 0. ® no speedup for MAXCUT
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Hamiltonian updates: quantum implementation Caltech
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- i il speedups
classical bottleneck: compute Gibbs states pH = fao (__'L)) e

quantum speedup:
prepare copies of py on quantum computer
estimate tr(A pp) via phase estimation O(1/€2
estimate diag(pp) via computational basis measurements O(n/€?

O(y/nss°®)
) copies
) copies

Theorem (Brandao, RiK, Franca; 2019)
Hamiltonian Updates approximately solves binary quadratic SDP relaxations in w
quantum runtime On3(/s) M)
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Hamiltonian updates: quantum implementation Caltech

quantum SDP
classical bottleneck: compute Gibbs states py = tr?:fp(-f:’ )) :K
m Richard Kiing

quantum speedup:

prepare copies of pp on quantum computer (v/nss°d)
estimate tr(A py) via phase estimation O(1/€?) copies
@(n/€?) copies

estimate diag(pH) via computational basis measurements

Theorem (Brand3o, RiK, Franga; 2019)
s in

Hamiltonian Updates approximately solves binary quadratic SDP relaxation
quantum runtime Olat (B —

edup for important SDP class
25) and O(n*°s)
optimal Hamiltonian = data processing

@ first quantum Spe
® beats classical runtimes O(n

© classical access to (approx.)
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Details about quantum subroutine

important design feature: Hamiltonians are very structured:
H = aA + BD, a,B = O(log(n)/e)
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important design feature: Hamiltonians are very structured:
H — aA+ BD, a, B = O(log(n)/€)
@ use [Poulin, Wojcan; 2009] to reduce task of preparing pu to simulating time
evolution (O(/n) invocations)

® use [Childs, Wiebe; 2012] to split up time evolution (negligible overhead)

© [Low; 2019]: implementing exp(itaA) costs (5(\/§1+°(1))

©® [Prakash; 2014] implementing exp(itfD) with quantum RAM costs O(n)

Quantum runteme

. total cost: O(n*>+/5
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Conclusion

we established speedups for important problem class:

maximize tr(A X)
XeSn

subject to diag(X) =
tr(X) = 1,

1

=

P4

=0
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Conclusion

we established speedups for important problem class:

maximize tr(A X)
Xesn

subject to diag(X) = £1
t]_‘(X) = 1, X t 0

our strategy-

(i) replace optimization by a sequence of feasibility problems
: —H
(ii) change of variables: X  pH = Lr‘f::p(_m)

(iii) iteratively penalize infeasible directions by
(iv) boost runtime by preparing each py on quantum c

Hamiltonian Updates H < H + €P
omputer
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Conclusion

we established speedups for important problem class:
maximize tr(A X)
Xesn

subject to diag(X) = =1
tx(X) =1, X = 0

our strategy:

(i) replace optimization by a sequence of feasibility problems
: —H)
(ii) change of variables: X < pH = “,f:fp(_m)

(iii) iteratively penalize infeasible directions by Hamiltonian Updates H < H + eP
+ runtime by preparing each py on quantum computer

(iv) boos . |
our result: we obtain approximate solutions faster than existing approaches:

. 5 A( 25 :
O(n3s) (classical) and O(nl's\@l‘o(l)) (quantum) vs. O(7*°s) (classical)
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Outlook

@ improve runtime scaling in approximation accuracy €
® implementation on near-tearm devices (better Gibbs samplers)

@ improve existing general-purpose quantum SDP solvers
@ adapt meta-algorithm to other important convex optimization problems:
® semi-discrete matrix factorization [RiK, Tropp; 2019]

© take-home message: quantum speedup

Pirsa: 19100088

® quantum state tomography [Gross 2011]

problems are a new and exciting development.

Thank you!

s for important optimization

There is still a lot to uncover!
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