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Abstract: & nbsp;Holographic quantum error correcting codes (HQECC) have been proposed as toy models for the AAS/CFT correspondence, and
exhibit many of the features of the duality. HQECC give a mapping of states and observables. However, they do not map local bulk Hamiltonians to
local Hamiltonians on the boundary. In this work, we combine HQECC with Hamiltonian simulation theory to construct a bulk-boundary mapping
between loca Hamiltonians, whilst retaining all the features of the HQECC duality. This allows us to construct a duality between models,
encompassing the relationship between bulk and boundary energy scales and time dynamics.

It also allows us to construct a map in the reverse direction: from local boundary Hamiltonians to the corresponding local Hamiltonian in the bulk.
Under this boundary-to- bulk mapping, the bulk geometry emerges as an approximate, low-energy, effective theory living in the code-space of an
(approximate) HQECC on the boundary. At higher energy scales, this emergent bulk geometry is modified in away that matches the toy models of
black holes proposed previously for HQECC. Moreover, the duality on the level of dynamics shows how these toy-model black holes can form
dynamically.
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Why are we interested in holographic dualities?

Holographic principle: a quantum gravity theory in (d+1)-dimensional
spacetime is equivalent to a many body system defined on its boundary

projecting data

Figure credit: Hirosi Ooguri
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Why are we interested in holographic dualities?
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Why are we interested in holographic dualities?

Holographic principle: a quantum gravity theory in (d+1)-dimensional
spacetime is equivalent to a many body system defined on its boundary

m AJS/CFT is the key example of the
holographic principle

= A number of toy models of holographic
duality which exhibit features of
AdS/CFT have been proposed

m This is the first toy model which isa
duality on the level of local
Hamiltonians

Figure credit: Hirosi Ooguri
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Why are we interested in holographic dualities?

Why is this important?

projecting data
on 2 dimensional

m The duality on the level of local surface

Hamiltonians allows us to extend the

toy models of holography to
encompass energy scales and time

dynamics.

Figure credit: Hirosi Ooguri
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Outline

m Background
» The AdS/CFT correspondence
» The HaPPY code
» Hamiltonian simulation

m Overview of technical details
m Applications of the construction
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The AdS / CFT correspondence

Duality between a gravity theory in AdSq..1 and a conformal field theory
on the boundary:

- |W)bulk i l'!">boundary
m lim,_or2¢(r.x)=0(x)
m Quantum error correcting code

Figure credit: Hackernoon
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The AdS / CFT correspondence

Duality between a gravity theory in AdSg.+1 and a conformal field theory
on the boundary:

- I”V)bulk i l'i”)boundary
m lim,—cor2¢(r.x)=0(X)
= Quantum error correcting code

Figure credit: Hackernoon
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The AdS / CFT correspondence

AdS/CFT as a quantum error correcting code:

® Hogical = % bulk

B Hphysical = Zhoundary

m Operators near the centre of
the bulk are better protected
against erasure than operators
living near the boundary

Figure credit: Hackernoon
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The AdS / CFT correspondence

AdS/CFT as a quantum error correcting code:

B Hogical = Zoulk

B Hphysical = Zhoundary

m Operators near the centre of
the bulk are better protected
against erasure than operators
living near the boundary

Figure credit: Hackernoon
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The HaPPY code

Perfect tensors

Definition (Perfect tensors, definition 2 from (Pastawski et al.
2015))

.2y, IS @ perfect tensor if, for any bipartition of its

ot A and a complementary set AC with |A| < A%, T is
sometric tensor from Ato A% i |

m Perfect tensors are the encoding isometries for optimal quantum

error correcting codes.
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HaPPY code

Tessellate the hyperbolic plane, and place a 6-leg perfect tensor in each
pentagon (Pastawski et al. 2015):

m Five legs are contracted
m The sixth leg is the bulk index

m The tensor network is an
isometry from bulk to bou ndary
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HaPPY code

Properties

The resulting tensor network has many of the structural features of
AdS/CFT (Pastawski et al. 2015):

m It is an error-correcting code

m Operators near the centre
better protected than operators
near the boundary

= But a local bulk Hamiltonian
maps to a global boundary
Hamiltonian
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What is Hamiltonian simulation?

In order for H' to simulate H we need to ‘encode’ the physics of H in this
new system:

H'=&(H) (1)

What properties do we need &(H) to have so that H' replicates the
physics of H?
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What is Hamiltonian simulation?

What properties should &(H) have?
Must be a Hamiltonian! &(H)" = &(H)
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What properties should &(H) have?
Must be a Hamiltonian! &(H)" = &(H)
It should preserve the spectrum: spec(H) = spec(H")

It should preserve all measurement outcomes:
tr(&(M)&(p)) = tr(Mp)
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What is Hamiltonian simulation?

What properties should &(H) have?
Must be a Hamiltonian! &(H)" = &(H)
It should preserve the spectrum: spec(H) = spec(H’)

It should preserve all measurement outcomes:

tr(&(M)&(p)) = tr(Mp) o
Time evolution: tr(é’(M)e“"’”("’)‘é"(p)ef"”("’)’) = tr(Me "t pe™))
Preserve the partition function: ZgH)(B) = cZu(P)
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What is Hamiltonian simulation?

What properties should &(H) have?
Must be a Hamiltonian! &(H)" = &(H)
It should preserve the spectrum: spec(H) = spec(H")

It should preserve all measurement outcomes:

tr(8(M)E(p)) = tr(Mp) e
g Time evolution: tr(&(M)e 6 Mg (p)e* () = tr(Me it pe™)
Preserve the partition function: Zg(r)(B) = ¢ZH(P)
@ Real linear: &(pA+ (1-p)B) =&(PA) + &((1-p)B), p[0.1]
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What is Hamiltonian simulation?

In Cubitt, Montanaro, and Piddock 2018 it's shown that any map &(H)
satisfying:

E(H)' =&(H)

spec(H) =spec(H")

&(pA+(1-p)B) =&(pA)+&((1-p)B), PE[0.1]
Must be of the form:

&(H)=V(H*P® G4

And any map of this form preserves measurement statistics, time
dynamics and partition functions.
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What is Hamiltonian simulation?

In Cubitt, Montanaro, and Piddock 2018 it's shown that any map &(H)
satisfying:

&(H) = &(H)

spec(H) = spec(H’)

&(pA+(1-p)B)=&(pA)+&((1-p)B), PE[0. 1]
Must be of the form:

&(H) = V(nge(HT)@q) vt

And any map of this form preserves measurement statistics, time
dynamics and partition functions.
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What is Hamiltonian simulation?

Definition (Perfect simulation Cubitt, Montanaro, and Piddock

L,‘E_ll’-'c lr" |QCIC}| J C}pl MQL\I. ';.\. _,‘ _
S, such that

|u i

Illlll
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What about approximate simulations?

In Cubitt, Montanaro, and Piddock 2018 it's shown that approximate

simulation approximately preserves all physical quantities.
Can use perturbation gadgets to construct approximate simulations:

H'=AH0+H1

Generate effective interaction: [|H'l<a — Hetll < €
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What about approximate simulations?

In Cubitt, Montanaro, and Piddock 2018 it's shown that approximate

simulation approximately preserves all physical quantities.
Can use perturbation gadgets to construct approximate simulations:

H'=AHO+H1 (3)

Generate effective interaction: [|H'l<a — Hetll < €
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What about approximate simulations?

In Cubitt, Montanaro, and Piddock 2018 it's shown that approximate

simulation approximately preserves all physical quantities.
Can use perturbation gadgets to construct approximate simulations:

H' = AHp + H4 (3)
Generate effective interaction: [|H'l<a — Hefill < €

A B
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What about approximate simulations?

In Cubitt, Montanaro, and Piddock 2018 it's shown that approximate

simulation approximately preserves all physical quantities.
Can use perturbation gadgets to construct approximate simulations:

H' = AHp + Hi

Generate effective interaction: ||H lea— Hetfll <€

Page 30/67



Hamiltonian simulation

Results from (Cubitt, Montanaro, and Piddock 2018) show that all
Hamiltonians can be (approximately) simulated by certain simple 2d spin

lattice models using perturbation gadgets.

Can we use these simulation techniques, along with a holographic
quantum error correcting code from a 3D bulk to a 2D boundary, to

construct a toy model of holographic duality between local
Hamiltonians?
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Outline

m Background
m Overview of technical details

» Tessellations of H®
» Tensor network construction
» Boundary Hamiltonian

m Applications of the construction
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How do we generalise the HaPPY code to higher

dimensions? !
Embed a perfect tensor network in a tessellation of H® - but how do we

analyse the properties of the tensor network?
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Hyperbolic Coxeter groups

Definition (Coxeter groups)

-rrvg, ikl ’J'()E iy

|ﬁ’r4_1 — \_u»....—'l

The pair (W, S) is called Coxeter system.
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Hyperbolic Coxeter groups
Coxeter polytopes

Deﬂnltlon (Coxeter polytope)

g 7 or H" is a Coxeter po loo ﬁ@ooﬁwlt its dihedral
I '.i.u,;;:%@mlmﬁ. C»v»””

A Coxeter polytope P e X" tiles X2
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Hyperbolic Coxeter groups

Coxeter systems and tessellations

A Coxeter system (W, S) can be associated to every Coxeter polytope,
Pe X

m The generators S are reflections in the facets of P

Z where aj; is the dihedral angle between the i and j facet
Ul

|| m,3-=
oflf

The properties of the tessellation of X" by P can be inferred from the

Coxeter system (W, S).
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Tensor network construction

We can use the theory of hyperbolic Coxeter groups to reason
algebraically about the properties of our perfect tensor network:

m Derive a condition for the
tensor network to be an
isometry from bulk — boundary

m Determine the properties of the
boundary Hilbert space

m Calculate the weight of a
boundary operator dual to any

bulk operator
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Holographic QECC in H®

We can construct a non-local boundary Hamiltonian which is a perfect
simulation of Haulk-
For each tensor in the network, construct the projector:

1
M) = ——

where S(*) is the stabilizer associated with that tensor.

Let :
Hnon-local = VHguk V' +AsHs

where HS o Zw(ﬂ mm nc(;:(w)).
— Hron-local IS & perfect simulation of Hsulk

Pirsa: 19100087
Page 38/67



Boundary Hamiltonian

Perturbation gadgets
Subdivision gadget:
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Boundary Hamiltonian

Perturbation gadgets
Subdivision gadget:

Crossing gadget:
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Boundary Hamiltonian

Perturbation gadgets
Subdivision gadget:

Crossing gadget:

Fork gadget:
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Holographic duality between local Hamiltonians

Use the perturbative simulation techniques to simulate Hnon-local by a
local boundary model:

m Local boundary Hamiltonian:
Hoound = 2(i.jy Xij (XJXJ +YiYj+ Z:Z;)

® #bound consists of O(n(log(n)4)) qubits,
embedded in an O(1) triangulation of a
2-sphere

m The new ‘boundary’ is at a distance
O(log log(n)) from the original boundary

m The structural features of AdS/CFT
captured by the HaPPY code are still

present
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Outline

m Background
m Overview of technical details

m Applications of the construction
» Map from boundary — bulk
~ Energy scales in the duality
~ Black hole formation
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Boundary — bulk mapping

The boundary Hamiltonian can be written as:

Hoound =ALHL + AgHs + Hauik
a | N

Locality  Stabilizers Hauik
Consider the boundary Hamiltonian which is dual to the
~ero-Hamiltonian in the bulk:

Hgeneric = ApHL+ ASF"—S

We cC

an recover a geometric interpretation of the bulk from Eq. (9)-
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Boundary — bulk mapping

Decompose Hboundaryl A, into subspaces €, of energy E where:
2

1 1
(n- E)ASS E<(n+ E)AS

= Hgenericl A is block diagonal with respect to the decomposition
2

Fpoundaryl A = @pn
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Boundary — bulk mapping

Hgeneric| i
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Boundary — bulk mapping

What's the geometric interpretation?

S0 S

.'
;‘ 4 o
‘e ':.
. ' ph

"t
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Boundary — bulk mapping

ngnericl ~_\2;_ ol
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Boundary — bulk mapping

What's the geometric interpretation?

o Fs

" W
(| '_":..

to' ‘ o
:-":n::“ .:.
e

-.f. W

L
L e
" "
oo
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Boundary — bulk mapping

7 (5




Boundary — bulk mapping

Boundary Hilbert space:
Fboundary| 3 =®p®cHn,c (11)

where 7, = tensor network with n ‘holes’ in configuration c.
Let V,.c be the encoding isometry for the tensor network corresponding

to A c- Define:
U=en&c Vnc (12)

Consider a boundary state: [ S Jé’bounda,yl% ®n ©cln,c-
The corresponding bulk state is given by:

|W)Bulk = |w>boundary
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Boundary — bulk mapping

The corresponding bulk state is given by:
h”)Bulk = |w>boundary

|1,U>Bun< has a geometric interpretation:
e hV)Bulk m

o
'57501.01
Jé"] ,Co
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Boundary — bulk mapping
The corrasponding bulk state is given by:

¥ ek = U9 bandary

‘ on.
|wr) g has a geomelnc interpratatio

o |w::'&ik -

Pirsa: 19100087 Page 53/67



Boundary — bulk mapping

Boundary Hilbert space:

Fboundary| AL =@&n®cHn,c (11)

where 7, o= tensor network with n ‘holes’ in configuration c. :
Let V,.c be the encoding isometry for the tensor network corresponding

to Hn,c- Define:
U=en®cVne (12)

Consider a boundary state: [#)poundary € #boundaryls €n &cHn,c-
The corresponding bulk state is given by:

[v)Buik = U |%)boundary
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Boundary — bulk mapping

What about mapping more interesting boundary Hamiltonians to the

bulk?
Hbound| 521‘ =

(Heukl. 7

0

0

0

Insulklm_c, I

0

0

[ﬁBulkIJz’,,c2 ]

-]

[Heukl 0]

)
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Boundary — bulk mapping

What about mapping more interesting boundary Hamiltonians to the
bulk?

— We can calculate the bulk Hamiltonian which acts on the tensor
network with n ‘holes’ in configuration ¢ as:

n.c 7 i
Héulk) = Vp.cHsulkl #4c Ve

Pirsa: 19100087
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Boundary — bulk mapping
What about mapping non-block-diagonal boundary Hamiltonians to the
bulk?
Hooundl s

H (c2) 5
HBUIKIJ(’Q 622) 61 2 1.n \

Hauikl.5 (c1.0)
5(201) IHBulkI./z’.,c, ] 5%‘2-@) e O

5%0;.&) [ﬁBulkLm,oz l L 5%"’;'")

)
2%

-]

5(ccn) s(cc2) GEA )

nz2 nz2
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Boundary — bulk mapping

What about mapping non-block diagonal boundary Hamiltonians to the
bulk?
As before:

HUO) = Vi oFlauil e Vi (16)

The non-diagonal terms in Hyoundl 2, correspond to coupling between
2

the different bulk geometries.
— The tensor network description is only an approximation to the

underlying bulk physics.
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Boundary — bulk mapping

What about mapping non-block diagonal boundary Hamiltonians to the
bulk?
As before:

Héﬁ'ni) = Vn,cHaulkl s Vic (16)

The non-diagonal terms in Hoound| 3, correspond to coupling between
s

the different bulk geometries.
— The tensor network description is only an approximation to the

underlying bulk physics.
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Energy scales in the duality

Black holes in the HaPPY code are modelled by removing a tensor from
the tensor network:

e dual to high energy boundary states - as
expected in AdS/CFT.

In our model these ar

A »
« (59 ‘
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Black hole formation

Bulk Hamiltonian: Hp 1k = Xz hz
Choose Ag such that Ag > [|hz|l, but As < Y zllhzIl.

Start in the ground state: [¥vac)
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Black hole formation

Bulk Hamiltonian: Hy ik = £z hz
Choose Ag such that Ag > ||hz|l, but As < > zIlhzll.

Apply some local bulk excitations: [w1) = xAx [¥vac)
(v1| Houlk [¥1) > As
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Black hole formation

Bulk Hamiltonian: Hypyk = Xz hz
Choose Ag such that Ag > [lhzll, but As <Xz 1Azl

er will fall inwards

Allow the system to evolve under Hpyik, the shell of matt

A »
{5 “
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Black hole formation

Bulk Hamiltonian: Hpk = £z hz
Choose Ag such that Ag > [|hz]l, but As < Y z1lhzIl.

must still have energy > As, but can't pick
this up from O(1) bulk terms

Evolution has been unitary, SO
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Black hole formation

Bulk Hamiltonian: Hp ik = £z hz
Choose Ag such that Ag>> [|hzl, but As <3z l1hz]l.

under unitary dynamics is to violate a

The only way to conserve energy
e a tensor from the network

stabilizer term, i.e. remov

{« (P >
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Black hole formation

Bulk Hamiltonian: Hy ik = X2 hz
Choose Ag such that Ag > [|hz|l, but As < Y zllhzI].

erve energy under unitary dynamics is to violate a
m, i.e. remove a tensor from the network

The only way to cons
stabilizer ter

w oA
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Conclusions

m We have constructed a toy
model of holographic duality
where the bulk-boundary
mapping is between local

projecting data
on 2 dimensional

Hamiltonians

This allows us to incorporate
energy scales and dynamics in
the toy models, and to
construct a boundary — bulk
mapping

At what point do these toy
models break down?
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