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Abstract: Thanks to the Lanczos algorithm, the Hamiltonian dynamics of any operator can be written as a hopping problem on a semi-infinite
one-dimensiona chain. Our hypothesis states that the hopping strength grows linearly down the chain, with a universal growth rate $\alpha$ that is
an intrinsic property of the system. This leads to an exponential motion of the operator down the chain, capturing the irreversible process of simple
operators inevitably evolving into complex ones. This exponential growth exists for generic quantum systems, even away from large-$N$ or
semiclassical limits. In fact, $\alpha$ gives an upper bound for the exponential growth rate of a large class of operator complexity measures,
including out-of-time-order correlations. As a result, we conjecture a new bound on Lyapunov exponents $\lambda L \leq 2 \alpha$, which
generalizes the known universal low-temperature bound $\lambda L \leg 2 \pi T$. We illustrate the hypothesis in paradigmatic examples such as
non-integrable spin chains, the $g$-SY K model, and chaotic coupled top models, and show that some of them saturate the conjectured bound.
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Short-time and late-time behavior

Bits needed to
encode state of
the system

Tth

Thermalization
Chaos
Lyapunov exponents

Hydrodynamic regime
Diffusion constants
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Recent focus: operator dynamics

Yo(t
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» Operator size, tA . ‘
Lyapunoy exponents \\% %// 7/ :
measured by OTOC // -
‘ ¥ oteo BN\ /..

N\
+ Emergent Hydrodynamics Jo
(Diffusion constants) X

» Operator complexity

Is there a universal structure that governs and relates these
quantities in generic systems?

Can we utilize such a structure to enable computation of dynamics?
(e.g. compute transport coefficients of strongly coupled systems.)
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Recent progress from special models

Random unitary networks:

Nahum (2018), von Keyserlingk (2018) Khemani (2018)
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v Local model and finite N per site |
Universal operator front propagation. l
Emergent dissipation / diffusion of conserved charge

X Non Hamiltonian dynamics.
No energy conservation or notion of temperature.
Lyapunoy exponents not well defined

SYK model

Sachdey, Kitaev, Stanford-Maldacena, ...

v/ Hamiltonian dynamics, Lyapunoy exponents;
Some connections to energy transport.

X Non generic features: Large-N / non locality
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This talk

* Preliminaries: operator dynamics, recursion methods

[- A hypothesis for universal operator growth 1

« Evidence for the hypothesis:
(i) Numerical (Spin chains)
(i) Analytical (SYK models)
(iii) Physical arguments

» Application: new bound on chaos

« Application: computational approach
Transport coefficients in strongly coupled systems
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Focus on models with finite-dimensional Hilbert space per site

Example: Quantum Ising chain ?*’**"*&

12345 -

Let's consider an example. Suppose O = X,
H=> Xi+1.05ZZi1+05Z.
We know . _
O(t) — ef:HtOeth

= O — it[H, O] + (—it)*[H,[H, O] + - --
O

Let's compute!

0 = X;

[H, 0] = 1.05iY12Z, + 1.05iZ1 Y, + 0.5iY;
[H,[H,0]] = 21212, — 2.1Y1 Y,

+ 1.052X; + 1.05%2X, + 1.052Z1 X, Z3

4+ 0.525X12Z, + 0.525Z1 X, + 0.25X;.
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Space of operators

operators are “rounded” kets |O)
an example is |0) = X1 ® Yo® Z3 +0.3Y1 ® X»
the inner product is (A|B) := Tr[AtB]/ Tr[1]
the Liouvillian generalizes the Hamiltonian £ = [H, -].
time-evolution from Heisenberg EOM --idlft)) = L]0).
solution |O(t)) = e“t|0)
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A convenient basis in the space of operators:

the Krylov basis

{O,,} orthonormal ,

{|0n)} = Gram Schmidt [L" |O)] Vn, span(Oy, ..., 0y)
span(0O, LO,...,L"0O)

The Liouvillian is tridiagonal under the Krylov basis  {O,, }._

0O b 0 O
by 0 by O
(Onlﬁlom) - 0 bg 0 b;‘;

b ba b3 by

O, 03 Oy

Mattis, 1981
Physics in 1d

How to reduce practically any problem to one dimension, was the ttle of
the first talk (given by D.C. Mattis) at the 1980 International Conference on Physics
in One Dimension. That title refers, of course, to the recursion method as an
instrument by means of which a large set of possible problems in condensed matter
physics can be reduced to a pseudo-1D problem, known as the chain model
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A convenient basis in the space of operators:
the Krylov basis

“String of Pauli's” basis

b 1 bg bj}

Krylov basis . . . ST

(’)0 (’) 1 C) 2 C) 3
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“Operator wavefunction” in Krylov space
b b b b

en(t) = (On]O(t) o oot

0 1 2 3 4

5

o L L
5

6t(,0n — _bn-Jf-199n+1 + b'n,@on—l; Pn (0) — (Sn()

t=20

'h 1 bg R :
O—C O OO
Oy O 0O 03 0O

The autocorrelation function: C(t) = tr [O(t)O] = po(t)
" _ = 2
Operator complexity: (n(t)) = Z len(t)|n

“K-complexity”
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We have mapped the time evolution of any operator to a 1D
hopping problem.
Now the question is: what do the hopping amplitudes by,

look like?
b1 by b3 by
O OO Qe

OU 01 02 03 04

Empirical evidence:

30
- - SYK O b” ~ N
25 1 X in XX >
D
20 - XXX '
Ising ora®
215 - Inted 1/2
b, ~ n
10 4
- Frec
A by, ~ O(1)
0 == l T l |
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Hypothesis: In a chaotic quantum system, the Lanczos
coefficients b, are asymptotically linear, i.e. for o,y > 0,

by, =% an + .
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Asymptotic  Growth Rate System Type 30 SYK 4
251 - XXX &
b, ~ O(1) Constant Free models o . &
20 Ising C Wi
b, ~ O(ﬁ) Square-root Integrable models £ 15 - \1\&*“*’5("\'
b, ~ O(n) Linear Chaotic models 10 4
: . « Fr
b, > O(n) Superlinear Disallowed 5 o
0 . . .
10 20

We term the slope «, the “growth rate” of the
operator for reasons that will become clear.
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The evidence

Numerical: Many distinct nonintegrable spin chains, SYK model

{“':I (h} - X = 0.5
15 14 - h\'—(].l
hx = 0.01
12 hy =10
10
® =10
‘ Weakly interacting
6 -
- : Noninteracting
L L T L L L ||
0 10 20 30 0 10 20 30
I T

Analytical: SYK model in the limit of large ¢

b, — \/q n(n—1)/2 n > 2
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Linear growth is the fastest growth possible

Sketch of proof

bl )3 < ||L£"C <nl? e = b, <an

AN

||[:”O| |2 (O|£2’”|O) Combinatorics of how many
terms arise by successive
Sum over hopping histories that commutation with H, using
start at the origin and return to it k-locality
after 2n steps => Dyck paths
t
I o()
123456 7 8 910111213141516 ) Ot = 0) o
= e 000000000

2n
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Solution of 1D QM with linearly growing hopping
bl })2 1)3 b4 b.n_N T
O— OO O O
O]_ 02 (,)3 O«i

atg‘?n s —bn.+199n+1 + b'ntpn—l

Continuum limit
Orpr = —20x0, @y,
Method of

Characteristics ](f) — Gﬂaft
- 9
) 20t
0.( (rt)f ~ @ o |
o K(rylov)-complexity
. e grows exponentially in

0.5 1 H 10 50 100 500
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Relation to chaos

Classical and quantum chaos

Quantum systems:
Out-of-time-order correlation
&) = || &) e*

§

.
1By

2 i 2
BT (L) ‘ o :
-1 = Hz(l),pl0)}H ~ e

0z (0) {2 (t), p(O)} Larkin, Kitaev, Maldacena, Shenker,
Stanford,...
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Out-of-time order correlators (OTOC)

> (V- 0@) [V, O0)])

J

Non-local quantum

L | t t
models (SYK-like) ocal quantum systems

Classical systems

t

A
e

[[ &0l = [ &y e

s
180 ain

(more involved)

[Huse, Khemani,
Nahum, Swingle, ...]
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OTOC and K-complexity

Non-local quantum

L | t t
models (SYK-like) ocal quantum systems

Classical systems

t

o
[| &l = Sy e

K-complexity:

Can they be compared?
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Bound on chaos at infinite-T
)\L S 20¢

Empirical evidence:

¢ 2 3 4 7 10 x
SYK_Q a/J 0 0.461 0.623 0.800 0.863 1

AL/(27) 0 0.454 0.620 0.799 0.863 1
[Roberts, Stanford, Streicher]

Classical
two-spin model

H = (1+4¢)(57 +55)+4(1 - )S7 S5

Classical Exponent
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Bound on chaos at infinite T A < 2«

Sketch of proof for quantum systems ~ OT'OC(t) = Z([C’J(T)_, ViIO), V;])
J

OTOC(0,) <Cn => OTOC(t) <C'" n(t) => A, <2a

\

2
o OTOC(t) ~ e ! (n), ~ e
|0,,) = GramSchmidt[£"|O)]

h] {JQ b;g {)4 hn ~ (11

Oy O O, Oz Oy
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Relation to Maldacena, Shenker, Stanford bound?

)\L S 2T
Easy to generalize Lanczos formalism to finite T,
but need to decide on an inner product:

e The “standard” inner product (for linear response

theory) is given by g(A) = [6(A) + 8(A — B)]/2:

‘ s._ 1 8t At B -
(A\B)ﬁ =07 Try"A'B + A'y” B] (54) J
~ ;
e The Wightman inner product corresponds to | 9.7 - !
g(A) = oA B/2): -
W . 1 B8/2 At B2 KR Largu‘q
(A|IB)g = Z'I‘l[y A'yP/°B]. (55) ﬁ A,
7 T 0O 2a
27
a
27
At < 2oV (conjecture) 0
) — T ! g g T 1 T T
0 3

Temperature 7'

2(1»(]}1;) < 27T (proved)
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This talk

Preliminaries: operator dynamics, recursion methods

A hypothesis for universal operator growth 1

Evidence for the hypothesis:
(i) Numerical (Spin chains)

(i) Analytical (SYK models)

(iii) Physical arguments

Application: new bound on chaos

Application: computational approach
Transport coefficients in strongly coupled systems
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@ |s measurable in linear response: It gives the high-
frequency decay of the spectral function

C(t) = Tr [O(t)O]

d(w) = /.C(t)ciwtdt

_ rlw|

bn. ~ (XN < é[)(UJ) ~ € Z2a

Such exponential tails
have been measured for
nuclear spins with NMR

o iy W  inCaF2 [Lundin et al, J.
> Phys.: Condens. Matter
2 (1990) 10131]
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Application to hydrodynamics:
diffusive transport

O = Z qreikzn
T

Diffusive transport means:
(O|OGEN e BT ) = DRt
Pole of Green function

Can the knowledge of universal
operator growth help us compute D?
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Cautionary remark:
This work is concerned with high-frequency behavior

.

There is no a priori relation with long time behavior!

Example:

-

C(t) =

ur-«]l

/ ~ € N T() <:’\> b'ﬂ.— ~ an
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Mattis, 1981
V. Vishwanath G. Miiller 2008

Recursion method

is a well known technique that uses the Lanczos
coefficients to calculate the auto-correlation
Green function via a continued fraction expansion

s (o 1£‘@) -

5 —

A~

T R T S P TR

But usually, on'ly a finite |
number of Lanzcos
coefficients are known. > = =
A proper asymptotic Lt .b” +2 .b"" 9 °
extrapolation is then |
required.

A P T T T A P YA

Asymptotic Coeflicients: b, ~ an

A
- ™~
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Application to mixed field Ising chain

H=Y Xi+105ZZ1+05Z.

* We apply the method to calculate Doy e v
energy diffusion constant (thermal "
conductivity) in a mixed field Ising

model. S 0T + Numerical

= Chiadratic Fit

Fole Location —iz

rrrrrorrT

* The result compares favorably with 5 L0 05 00 o itz o0 og o
independent numerical methods iz Wavevector g
Density Matrix Truncation [Bingtian

Ye, Francisco Machado, in progress]. We calculate Green function for

energy density wave operator Og = 3. e"%¢;
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Summary

» Hypothesis for universal operator dynamics supported by
extensive evidence. Linear growth of Lanczos coefficients

b, =an+ B+ o(l), n— oo

» Implies exponential growth of Krylov-complexity with the
exponent a

» Unlike the Lyapunov exponent, « is well defined in any
generic model (no need for large N or non-locality)

* abounds from above the Lyapunov exponent, when the
latter is well defined

PS: There are log corrections in 1D
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