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Abstract: Quantumé& nbsp;complexity& nbsp;is a notion characterizing the universality of the& nbsp;entanglement& nbsp;arising from a quantum
evolution. A universal evolution will result in a complex entanglement. At the same time, this also corresponds to small fluctuations and to
unlearnability from the point of view of machine learning. All these aspects are connected to the different features of k-designs, which are
under-samplings of the Hilbert space.& nbsp;

We study the transition in& nbsp;complexity& nbsp;due to the doping of a quantum circuit by universal gates and show that the transition to complex
entanglement can be obtained by just a single gate.& nbsp;
These results are relevant for the notions of scrambling, quantum chaos, OTOCs and operator spreading.

We conjecture that the transition to 4&™ design, W-D and unlearnability are one and the same.
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B Unitarity = Time Reversal

B Entropy is constant with unitary evolution

B Entanglement Entropy is not!

B Does increase in entropy mean
irreversibility?

B Where does irreversibility come from?

B Irreversibility is a feature of Quantum
Complexity

IRREVERSIBILITY IN QUANTUM PHYSICS
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& There are two ways of approaching the
notion of quantum complexity

B 1. (Kolomogorov, Susskind) complexity
relative to a fiducial state as the least
number of elementary operations needed
to make that state.

B If a quantum evolution is ergodic, it can
eventually reach complex states: Gibbs
POV

B 2. (this talk) The state is complex if it
belongs to a large equivalence class, i.e.,
it is hard to tell it apart from many other
states: Boltzmann POV

WHAT IS QUANTUM COMPLEXITY?
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B States are complex if their entanglement
IS complex

B This means that it is very difficult to
distinguish them from many other
entangled states

& The landscape of entanglement would
have many local minima

B Trying to disentangle a state would be
hard

QUANTUM COMPLEXITY AND
ENTANGLEMENT
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RANDOM QUANTUM CIRCUIT (RQQC)

B CONSIDER A SYSTEM OF N SPINS 1/2 INITIALIZED IN
A PRODUCT STATE

® WE DRAW SOME RANDOM GATES BETWEEN RANDOM
QUBITS AND MONITOR THE ENTANGLEMENT
(HEATING)

@ AT SOME POINT THE ENTANGLEMENT BECOMES
MAXIMAL AND EQUILIBRATES

@ THEN WE TRY TO REVERSE THE EVOLUTION AND
DISENTANGLE THE STATE (COOLING)
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QUANTUM GATES

e NOT gate: flips the state of the qubit

0) — |1) and |1) — |0)

e H (Hadamard) gate:

0) — L= (|0} + [1)) and [1) — = (0} — 1))
e Phase gates Pys: gives a state dependent phase
0) — [0) and [1) — €*]1)

The phase gate with 6 = 7/4 is called T
The phase gate with 6 = 7/2 is called S.

e CINOT gate or controlled-NOT gate:

100) — |00), |01) — |01)

110} — [11), [11) — |10)
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UNIVERSAL AND NOT SETS OF GATES

B (H,CNOT,S) dense in Clifford Group, NOT
UNIVERSAL

B (H,CNOT,NOT) = NOT UNIVERSAL
B (H,CNOT,T) = UNIVERSAL
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Reversing the evolution: Disentangling the state

Metropolis algorithm:

e (1) Compute the entanglement entropies (all bipartitions)
e (2) Choose a gate randomly

* (3) Apply the gate

* (4) Recompute the entanglement entropies

* If entropies are reduced, add gate to reverse list

, If entropies increase, keep gate with Boltzmann
probability or discard it and go back to (2)

e (5) Stop when entanglement entropies are zero
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IRREVERSIBILITY AND COMPLEXITY

B [rreversibility arises not just because there are many ways of
entangling vs few ways of disentangling.

B Even with active disentangling (Metropolis) it may be difficult

. Complex entanglement means that searching for a disentangler
requires exhaustive search

B Complex entanglement is a property of the statistics of the
entanglement gaps.

B Simple entanglement means that a disentangler can be found by
some principle (annealing)

B This also characterizes universal computation as ergodic and

non-universal as non complex
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ENTANGLEMENT IN HAMILTONIAN
SYSTEMS

® ENTANGLEMENT IS EXPRESSED BY A SINGLE NUMBER (VN
ENTROPY), BUT BOTH INTEGRABLE SYSTEMS AND NON-
INTEGRABLE SYSTEMS EVOLVE TOWARDS VERY ENTANGLED
STATES. THE LATTER THERMALIZE, THE FORMER DO NOT

® MBL STATES DO NOT OBEY ETH AND THEY DO NOT EVOLVE
TOWARDS VERY ENTANGLED STATES ALTHOUGH THESE
SYSTEMS ARE NOT INTEGRABLE

@ |IF WE LOOK ONLY AT A SINGLE NUMBER FOR
ENTANGLEMENT WE CANNOT MAKE SENSE OF HOW
ENTANGLEMENT COULD EXPLAIN ALL THESE SITUATIONS

Pirsa: 19100066 Page 12/21



Pirsa: 19100066

HEISENBERG SPIN CHAIN

B What happens for a spin system described by a Hamiltonian?

B Time evolution is given by exp(-iHt)

B We can also study the entanglement complexity of the
eigenstates

L=
g B e o 1) ] 2 > o2 L
=/ E (07041 0,0, 1+ Q070+ 20] + T;0; )
i=1

A=ux;=0,2 €[-1,1] XX model (AA localization)
A =05,z €[-11] ETH
A =0.5,z € [-10,10) MBL

B XX s integrable and localized

ETH thermalizes in subsystems
B MBL has quasi-local integrals of the motion and slow
entanglement production
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~ ENTANGLEMENT COMPLEXITY
AND DYNAMICAL PHASES

ETHA =05z ¢ [-1,1]
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B XX model: free fermions/ integrable,
Anderson localized

B ETH: thermalizes

B MBL: Hybrid behavior
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B MBL spectrum
approaches WD
if we truncate
heavy weights

B At long times, it
approaches WD
with vanishing
truncation

B Entanglement in
MBL is universal
at large times
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DISENTANGLING AND COMPLEXITY
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B XX can be disentangled

ETH is complex and cannot be disentangled

B MBL is hybrid in its disentangling behavior. In spite of low
entanglement its pattern is complex
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TRANSITION TO QUANTUM COMPLEXITY

We place n (possibly just one) T gates
sandwiched by Clifford circuits

n=0 will be just a Clifford circuit: ESS
will be Poisson

Can we drive a transition to Universal
(GUE) ESS?

|s integrability immediately destroyed?
What does Universal GUE correspond
- to?
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A QUANTUM KAM, THE ONSET OF QUANTUM CHAOS
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B There is a threshold ~sqrt{N} before Clifford goes into chaos
B This quantity is like a OTOC
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B When does the onset of complexity
happen by universal gates? Is it sqrt{N}?

B What is the role of time fluctuations of the
entropy in the effectiveness of cooling?

B When does the unlearnability transition
happen?

B When does the transition to 4-designs
happen?

@ Can you dope anything to a 4-design?

& Can you dope Clifford to Universal by
sqrt{N}?

B What is the relationship between
conserved quantities and entanglement
complexity?

B Quantum complexity, OTOC, and
scrambling

Open Problems
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DISENTANGLING AND COMPLEXITY
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B XX can be disentangled

ETH is complex and cannot be disentangled

B MBL is hybrid in its disentangling behavior. In spite of low
entanglement its pattern is complex
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B FIRST LAW OF QUANTUM
COMPLEXITY: The average
entanglement complexity across all the
TPS is constant.

B SECOND LAW OF QUANTUM
COMPLEXITY: In every TPS, universal
quantum evolution always entangles the
state in the most possible complex way
(with small fluctuations).

THE LAWS OF QUANTUM COMPLEXITY
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