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Abstract:

The detection of coalescing neutron stars via gravitational waves (GW170817) has revolutionized our understanding of the equation of state at
supranuclear densities. The equation of state determines how neutron stars interact in a variety of astrophysical contexts, from rapidly rotating
millisecond pulsars, to accreting X-ray sources, and, of course, coalescing binaries radiating gravitational waves. | will review the state of the field,
including commonly adopted parametrizations of the neutron star equation of state in the context of theoretical expectations, before introducing a
nonparametric inference scheme based on Gaussian processes. Nonparametric inference provides much greater functional freedom than
parametrized analyses, allowing for the direct inference of neutron star composition and the existence of possible phase transtions above nuclear
density. Additionally, | will review the search for predicted secular fluid instabilities within neutron star cores and their possible impact on
gravitational-wave signals. This instability couples pressure-supported (p-mode) and gravity supported (g-mode) oscillations within the star, and |
will show how GW170817 rules out only the most extreme theoretical predictions for how the instability could saturate. As the advanced LIGO and
Virgo detectors gear-up for the second half of their third observing run, we will conclude by discussing the outlook for these measurements with
future detections and the implications for broader astrophysical populations.
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A 60 second Introduction to
Gravitational-Wave Detectors
and GW170817

Pirsa: 19100065



introduction to GW170817
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introduction to GW170817
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Nonparametric
Equation of State Inference
with Gravitational Waves
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goals

e Self-consistently incorporate information from arbitrary tabulated EOS models
o condition prior directly on proposed EOS

e Automatically incorporate causality constraints and thermodynamic stability
o auxiliary variable:

g () | ‘,
h = l¢ c— — < < 2
¢ g dp | 0 <dp/dn < «

Allow for large amounts of model freedom
o  Gaussian process formally supports any possible ¢

Incorporate transparent priors )
o  configurable “confidence” in tabulated EOS
o different uncertainty at different pressures
m small uncertainty near the crust
m large uncertainty near the central core

determined by the covariance kernel
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Gaussian processes

BLACKBOARD WORK
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conditioning
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conditioning
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conditioning
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prior processes
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posterior processes
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GW170817 components
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canonical NS properties
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canonical NS properties
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generic NS observables
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generic NS observables
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NS composition
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generic NS observables
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goals

e Self-consistently incorporate information from arbitrary tabulated EOS models
o condition prior directly on proposed EOS

e Automatically incorporate causality constraints and thermodynamic stability
o auxiliary variable:

g () | ‘,
h = l¢ c— — < < 2
¢ g dp | 0 <dp/dn < «

Allow for large amounts of model freedom
o  Gaussian process formally supports any possible ¢

Incorporate transparent priors )
o configurable “confidence” in tabulated EOS
o different uncertainty at different pressures
m small uncertainty near the crust
m large uncertainty near the central core

determined by the covariance kernel
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Constraining Nonresonant Fluid Instabilities
iIn Degenerate Stars
with Gravitational Waves



multi-mode Iinteractions
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survey of dynamical tidal effects

(nonresonant) p-g secular instabilities

e nonresonant and active whenever the linear tidal perturbation is above some threshold.
o equivalently, when orbital separation is below some threshold or when orbital frequency is above
some threshold.
o 4-mode couplings are also important (Venumadhav+(2016)) and can dynamically cancel part of the
instability, but an instability still exists for dynamical tidal fields.
o finite-frequency and other non-adiabatic effects on mode shapes spoil the cancellation between 3- and
4-mode interactions, resulting in smaller but still possibly relevant growth timescales (Weinberg

(2016)).
e difficult to simulate
o spatial grid required to resolve high-order g-modes is prohibitively expensive.
o larger number of relevant coupled modes makes Galerkin amplitude equations difficult to simulate.
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survey of dynamical tidal effects

(nonresonant) p-g secular instabilities

e phenomenological model
o dissipation by p-g instability modifies orbital evolution and Gravitational-Wave phase (Essick+(2016)).

A . overall amplitude of induced phase shift
f : saturation frequency ~ instability threshold assuming modes grow quickly

n : scaling of energy dissipated as a function of frequency
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survey of dynamical tidal effects

(nonresonant) p-g secular instabilities
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p-g instabilities with GW170817
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p-g instabilities with GW170817
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p-g instabilities with GW170817
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survey of dynamical tidal effects

where does this leave (nonresonant) p-g secular instabilities?

With GW170817, logB > 0
“Peaks in posteriors” occasionally line up in the single-IFO runs

Result appears completely consistent with GR + Gaussian noise
There are peaks in the posterior, which are occasionally large
these occur due to Gaussian Noise as well

Constraints on the amount of energy dissipated by the p-g instability
Results are still consistent with a wide range of NL parameters
We haven't really constrained the theory space all that much...
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can EOS constraints help? prior posterior
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Appearing soon!

R. Essick, P. Landry, and D. Holz. Nonparametric Inference of Neutron Star Composition, Equation of
State, and Maximum Mass with GW170817.

| also work on GW data quality/detector characterization with machine learning, detector calibration using

astrophysical sources, and population inference with many (multi-messenger) sources. Ask me about any of this
or general GW stuff at any time!

Pirsa: 19100065 Page 38/38



