Title: Holographic correlators from bootstrap and supersymmetric localization
Speakers: Silviu Pufu

Series: Quantum Fields and Strings

Date: October 01, 2019 - 2:30 PM

URL.: http://pirsa.org/19100041

Abstract: In thistalk, | will describe some of the recent progress on computing holographic correlators using analytic bootstrap techniques combined
with supersymmetric localization.& nbsp; From taking a certain flat space limit of the holographic correlators, one can obtain scattering amplitudes
of gravitonsin string theory, and one can then reproduce some of the known results for these scattering amplitudes.&nbsp; | will focus mostly on the
case of the 4d {\cal N} =4 super-Y ang-Millstheory, but | will also mention related work in the 3d ABJM theory.
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Motivation

@ The AdS/CFT correspondence can be used in two ways:

e learn about quantum gravity / string theory / M-theory from CFT
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Motivation

@ The AdS/CFT correspondence can be used in two ways:

e learn about quantum gravity / string theory / M-theory from CFT

e learn about strongly-interacting QFTs from the bulk

@ Challenges:

e The CFTs are strongly coupled, so calculations are almost
impossible.

e Not much is known about string theory / M-theory in AdS beyond
the supergravity approximation, and not much has been done
beyond tree level.
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Motivation

@ The AdS/CFT correspondence can be used in two ways:

e learn about quantum gravity / string theory / M-theory from CFT

e learn about strongly-interacting QFTs from the bulk
@ Challenges:

e The CFTs are strongly coupled, so calculations are almost
impossible.

e Not much is known about string theory / M-theory in AdS beyond
the supergravity approximation, and not much has been done
beyond tree level.

@ This talk: Using analytic bootstrap + supersymmetric localization
— explore AdS/CFT beyond SUGRA
— New results about holographic correlators.
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AdS/CFT

@ Most well-established examples of AAS/CFT:

o 4d SU(N) N = 4 SYM at large N and large 't Hooft coupling
A = g%,,N / type IIB strings on AdSs x S°

e 3d U(N)x x U(N)_x ABJM theory at large N / M-theory on
Ad84 X 87/Zk.

@ Focus on N =4 SYM/ type IIB string for most of the talk.
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Analytic bootstrap for holographic correlators

@ Main idea: Holographic correlators are

e simple in Mellin space

- [ [ ] L]
] \b "/ \g
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Analytic bootstrap for holographic correlators

@ Main idea: Holographic correlators are

e simple in Mellin space (“simple” = can be bootstrapped)

o “flat space limit” = scattering amplitudes in flat space

time _—

\ / flat space_ \ /

4

_/&\ limit | /9\9

L

-
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Mellin amplitude
@ Example: Ops O;(X) w/ A; = A have 4-pt function

_ . 1
C.)1 )?1 "'(94)(4 - TS = GU,V,
(Or(x1) (Xa)] |X12]%2 [ X34]%A ( )
where X = X; — X; and
=2 o2 o2 52
U= X{oX34 V= X14X23
X13X24 X13%X24
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Mellin amplitude
@ Example: Ops O;(X) w/ A; = A have 4-pt function

L L 1
(O1(%1) -+ O4(Xa)) = = -—0a GU. V).
|X12|‘%|X34|m
where X = X; — X; and
o2 o2 o2 o2
U = X12%34 v = X1a%23
= T2 =2 = T2 22
X13X24 X13X24

@ Mellin amplitude:
r(4A2_d)7rd/2 " dsat s/2yu/2—A
Geom(U. V) = =53 / UV
2(p_ Y
)r (A 2)M(s.,t)

><I‘2(A+~-Z-)I'2(Au£-

10-1-2019 5/82

where s+t + u = 4A.
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Mellin amplitude
@ Example: Ops O;(X) w/ A; = A have 4-pt function

SR o 1
(O1(%1) -+ Oa(Xa)) = = -—0a G(U. V).
[X12]|28| X4 |28
where X = X; — X; and
52 o2 o2 o2
U = X12%34 v = X1a%23
=72 g2 = 72 v2
Xi3%24 X13%24

@ Mellin amplitude:
r(4A2_d)7rd/2 " dsat s/2yyu/2—A
2(p_ Y
) r (A 2) M(s, t)

><I’2(A~-§)I’2(A--§

10-1-2019 5/832

where s+t + u = 4A.
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Properties of Mellin amplitudes

Properties of Mellin amplitudes:
1) Analytic structure:

e Contact Witten diagrams — polynomial Mellin amplitude in s, t of
degree = (# of ders)/2.

DOE
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Mellin amplitude
@ Example: Ops O;(X) w/ A; = A have 4-pt function

. . 1
(O1(X1) -+ - O04(Xa)) = = = G(U, V),
|X12|‘%|X34|m
where X = X; — X; and

=2 o2 o2 52

U = X12%34 v = X14%23

= 2 o2 = o 92

X13X24 X13%X24

@ Mellin amplitude:
r(*5-24)x%2 r dsdt |
_ /2\yyu/2—A
Geom(U. V) = =53 / UV
)1 (8- ) Mes.0

o (st

10-1-2019 5/832

where s+t + u = 4A.
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Properties of Mellin amplitudes

Properties of Mellin amplitudes:
1) Analytic structure:

e Contact Witten diagrams — polynomial Mellin amplitude in s, t of
degree = (# of ders)/2.

e Exchange Witten diagrams —> Mellin amplitudes with poles.

(E.g. s-channel scalar exchange gives poles at s = Agyeh + 2N
where Agch IS the dimension of the op dual to the exchanged field).
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Properties of Mellin amplitudes
2) Flat space limit [Polchinski, Sussk

L T(RA=8) [t da g _op ok, (LBS LPT
AS.T) = lim ——5— / e M(zn, 2“,) .

L0 27["

Here, A(S, T) is the scattering amplitude of massless particles in
flat space:

c—loo

A(A - d)
L2
and S, T, U with S+ T + U = 0 are the Mandelstam invariants.

@ This formula implies that leading order in large s, t:
M(s, t)  flat space scattering amplitude

—0 aslL—

m? =

and, in particular, M(s, t) has the same growth at large s, t as the
flat space scattering amplitude.
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Properties of Mellin amplitudes

2) Flat space limit [Polchinski, Susskind, Giddings, Penedones, Fitzp:

rea—$) ot da 28 |2
AS.T) = lim 2)/ d—}.ugme“M(L St T).

Llsoo 37 c—ioo 2Tl 2 2«
Here, A(S, T) is the scattering amplitude of massless particles in
flat space:
m? = A(AL;d) —0 asl—

and S, T, Uwith S+ T + U = 0 are the Mandelstam invariants.
@ This formula implies that leading order in large s, t:
M(s, t)  flat space scattering amplitude

and, in particular, M(s, t) has the same growth at large s, t as the
flat space scattering amplitude.

@ Momenta restricted to d + 1 dims for AdSy. 1.
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Procedure

Procedure for computing holographic correlators: Instead of
analytic structure

~ growth at large s and t
computing Witten diagrams, use //

crossing symmetry

' SUSY
to determine the Mellin amplitudes up to a few numerical constants.
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Procedure

Procedure for computing holographic correlators: Instead of
analytic structure

~ growth at large s and t
computing Witten diagrams, use //

crossing symmetry

' SUSY
to determine the Mellin amplitudes up to a few numerical constants.

the flat space
/" limit
@ These constants can be fixed later using ¢
\ SUSic localiza-

tion
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Cases studied

Applied this procedure to:

@ 4d N =4 SYM (1/2-BPS ops) — (super)grawton scattering in
type |IB string theory [Bin _
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Cases studied

Applied this procedure to:

@ 4d N =4 SYM (1/2-BPS ops) — (super)gravnton scattermg in
type |IB string theory [Binder, Chest he

@ 6d Ay_+ (2,0) theory (1/2-BPS ops) —— (super)grawton
scattering in M-theory |c 1

@ 3dN =8ABJM U(N), x U(N)_, with k = 1,2 ( 1/2 BPS ops)
— (super)graviton scattering in M-theory [c ' in 1

@ 3dN =6 ABJM U(N), x U(N)_k with kK > 2 (1/3-BPS ops) —
(super)graviton scattering in M-theory (fixed k) or type IlA string
theory (fixed N/k)
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Cases studied

Applied this procedure to:

@ 4d N =4 SYM (1/2-BPS ops) — (super)grawton scattermg in
type |IB string theory Shester, SSP. Wang '19: Chi |

@ 6d Ay_+ (2,0) theory 1/2 BPS ops) s (super)grawton
scattering in M-theory [c r 18

@ 3d N =8 ABJM U(N), x U(N)_f with k = 1 2 1/2 BPS ops)
— (super)graviton scattering in M-theory [ SS

@ 3dN =6 ABJM U(N), x U(N)_k with kK > 2 (1/3-BPS ops) —
(super)graviton scattering in M- theory (fixed k) or type IIA string
theory (fixed N/k)

@ Simpler formulas in 4d A/ = 4 SYM. (Focus on this case.)

@ More SUSic localization constraints in 3d.
Silviu Pufu (Princeton University) 10-1-2019 9/32
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Scattering amplitudes in 10d and 11d

e Effective action in 10d:
Siod = /d1°x\/§[R+F§R4+f”S°D4R4+- .- | +(SUSic completion)

where /s is the string length.
@ The terms w/ > 2 derivatives are not fully known!
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Scattering amplitudes in 10d and 11d

e Effective action in 10d:
Siod = /d1°x\/§[H+F§H4+NS°D4R4+- .- | +(SUSic completion)

where /s is the string length.
@ The terms w/ > 2 derivatives are not fully known!
@ This gives the amplitude

1, @), C6)

A(S. T)=6"%(Q) [sru + 2350+ Hip (854 T2+ U + -+ O(g5)
(516 Q
= Asg tree(S. T)(S, T). AsG, tree = 7('U) :

@ The full leading term in gs is a ratio of Gamma functions.
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Scattering amplitudes in 10d and 11d

e Effective action in 10d:
Siod = / d1°x\/§[R+F§R4+f”S°D4R4+- .- | +(SUSic completion)

where /s is the string length.
@ The terms w/ > 2 derivatives are not fully known!
@ This gives the amplitude

((5)

’
A(S,T)=146"%(Q) [STU + “3(2%2 + W(S2 + T2+ UA° + .+ O(g?)
516 Q
= Asg tree(S. T)(S, T). AsG, tree = 87('U) :

@ The full leading term in gs is a ratio of Gamma functions.

@ In 11d, the effective action is similar, with /s — ¢, (and no gs), but
terms only up to D®R* are known.
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Scattering amplitudes in 10d and 11d

e Effective action in 10d:
Siod = / d‘ox\/§[R+(’§R4+@°D4R4+- .- | +(SUSic completion)

where /s is the string length.
@ The terms w/ > 2 derivatives are not fully known!
@ This gives the amplitude

¢(5)

1
A(S,T)=4"%(Q) [STU + “3(2%2 + W(S2 + T2+ U0 ...+ O(g?)
516 Q
= Asg, tree(S, T)f(S, T), AsG, tree = % -

@ The full leading term in gs is a ratio of Gamma functions.

@ In 11d, the effective action is similar, with /s — ¢, (and no gs), but
terms only up to D® R* are known.
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Scattering amplitudes in type |IB string theory

@ One can also write the scattering amplitude w/o expanding in gs:

1 gs/z
A(S,T) = 5'%(Q) [sru e a7 T)

where 7 = x + i/gs and &, is a non-holomorphic Eisenstein series

@ For &/, when x = 0, one has a finite number of perturbative
contributions + non-perturbative contributions:

L 2¢(3) 2n? ar
Eaj2 = ;3(/2) 0 f e [4rr+ fs -}+e o [%
S
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Scattering amplitudes in 10d and 11d

e Effective action in 10d:
Siod = / d1°x\/§[R+F§R4+f”S°D4R4+- .- | +(SUSic completion)

where /s is the string length.
@ The terms w/ > 2 derivatives are not fully known!
@ This gives the amplitude

¢(5)

1 R
A(S, T)=46"%Q) [STU + “3(2%3 + W(S2 + T2+ U0 ...+ O(g?)
516 O
= Asg, ree(S, T)I(S, T)., AsG, tree = 87('U) :

@ The full leading term in gs is a ratio of Gamma functions.

@ In 11d, the effective action is similar, with /s — ¢, (and no gs), but
terms only up to D®R* are known.
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Holographic correlators in N' = 4 SYM
@ In N =4 SYM, focus on the 20’ OopsS Sy =tr ((ﬂ)/(ﬂ)J - %’»(ﬂ)K(bK).

e Atlarge N, A = g3,,N, it is dual to string theory on AdSs x S° of
curvature radius L.
L gy

= —, :Qs-
[:g 41
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Holographic correlators in N' = 4 SYM
@ In NV =4 SYM, focus on the 20’ ops S = tr ((b,(z)J — %f.(b,«b"’).

@ Atlarge N, A = g3,,N, it is dual to string theory on AdSs x S° of
curvature radius L.
NVL Y

= —, :Qs-
[:g 47

@ The 4-pt function (SSSS) has an expansionin 1/N (or 1/c with
c=(N2—1)/4)and 1/X:

(SSSS) = disconnected + 1 [1 + 13 + 1 + - ]
¢ A2 )2

1 1 1
+—2[/\5+ + +---}+—3[,\9+/\5+1++---}+---
C C

3
2

corresp to tree-level: SG, R*, D*R*; one-loop ; etc.
@ All of the highlighted terms are known completely!
Silviu Pufu (Princeton University) 10-1-2019 12/ 32
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Scattering amplitudes in 10d and 11d

e Effective action in 10d:
Siod = / d1°x\/§[R+F§R4+fﬂsoD4R4+- .- | +(SUSic completion)

where /s is the string length.
@ The terms w/ > 2 derivatives are not fully known!
@ This gives the amplitude

1L @), C6)

A(S, T)=46"%Q) [STU 235 S+ W(S2 + T2+ U2 ...+ O(g?)
516 Q
~ Asc,uee(S. TI(S.T), Ast tres = .

@ The full leading term in gs is a ratio of Gamma functions.

@ In 11d, the effective action is similar, with /s — ¢, (and no gs), but
terms only up to D®R* are known.
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Holographic correlators in N' = 4 SYM
@ In NV =4 SYM, focus on the 20’ ops S = tr ((ﬂ)/(ﬂu — %4(1>K¢>"').

@ Atlarge N, A = g3,,N, it is dual to string theory on AdSs x S° of
curvature radius L.
o gw

= —, :Qs-
[:g 47

@ The 4-pt function (SSSS) has an expansionin 1/N (or 1/c with
c=(N2—1)/4)and 1/A:

(SSSS) = disconnected + L [1 + 13 + 1 + - ]
¢ A2 )2

1 1 1 1.2
+—2[/\5+ + +---}+—3[/\P+A5+1++---}+---
C C

3
2

corresp to tree-level: SG, R*, D*R*; one-loop ; etc.
@ All of the highlighted terms are known completely!
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Holographic correlators in N' = 4 SYM

Two comments:

@ One can compute (SSSS) to the orders mentioned even though
the higher derivative corrections to SUGRA are not completely
known!

Silviu Pufu (Princeton University) 10-1-2019 13/ 32
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1/2-BPS single trace primaries

e N =4 SYM field content: gauge field A, fermions A in 4 of
SU(4)p, scalars ¢; in 6 of SU(4)g.

@ 1/2-BPS single trace primaries:
Sp o tr c/)p \ A = P, [ODO] of SU(4)F;.

@ 4-pt functions (S5,S5,S,Ss) have been extensively studied. (In
SUGRA limit, full answer is known [Rastelli. Zhou] .)

Silviu Pufu (Princeton University) 10-1-2019 14/ 32
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1/2-BPS single trace primaries

e N =4 SYM field content: gauge field A, fermions A in 4 of
SU(4)p, scalars ¢; in 6 of SU(4)g.

@ 1/2-BPS single trace primaries:
Sp ox tr P, A=p, [ODO] of SU(4)F;.

@ 4-pt functions (S5,5,S5,Ss) have been extensively studied. (In
SUGRA limit, full answer is known [Rastelii, Zhou] .)

@ For now: (5,5,5,S,). Conformal sym and SU(4)g —

1

o4 o4
X12X34

($525,5,5,) = x (6 functions of U, V)

Silviu Pufu (Princeton University) 10-1-2019 14/ 32
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Ward identity

@ SUSY Ward identities
—> algebraic relations between the 6 functions of U, V
— all 6 fns can be written in terms of a single function 7(U, V)!

@ Roughly,
V
1 uv
(52528:5z) = (freepart) + —g—- | ¢y | x T(U, V).
X12X34
@ This is special to 4d N/ = 4 SUSY.
Silviu Pufu (Princeton University) 10-1-2019 15/ 32
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Mellin space

Can relate T(U, V) to the Mellin transform M(s. t):

" dsdt s\ ,U_3.o S

« T2 (2%) 2 (2—g)M(s.r),

whereu=4 — s —t.

M(s, t) can be determined up to a few constants using:
@ Crossing symmetry

M(s,t) = M(s,u), M(s, t) = M(u,t).

@ pole structure
@ asymptotic growth at large s, t

Silviu Pufu (Princeton University) 10-1-2019 16/ 32
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Analytic bootstrap for Mellin amplitude

The consistency conditions give:

M) = = —w =2
+0(1/c?).

where ¢y, ¢, C3, ...are arbitrary constants.

)+

PN

A2 A

Silviu Pufu (Princeton University) 10-1-2019

8 1 Ci G+t +u?)+c
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Ward identity

@ SUSY Ward identities
—> algebraic relations between the 6 functions of U, V
— all 6 fns can be written in terms of a single function T(U, V)!

@ Roughly,
vV
1 uv
($525,5,S,) = (free part) + =i | U | % T(U,V).
X12X34
@ This is special to 4d N/ = 4 SUSY.
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Scattering amplitudes in 10d and 11d

e Effective action in 10d:
Siod = / d1°x\/§[R+F§R4+F;°D4R4+- .- | +(SUSic completion)

where /s is the string length.
@ The terms w/ > 2 derivatives are not fully known!
@ This gives the amplitude

((5)

1
A(S, T)=46"%(Q) [STU + “3(2%3 + W(S2 + T2+ U0 4.+ O(g?)
516 Q
— -ASG, tree(8= T)f(S, T) ) ASG, tree = S-I(—U) -

@ The full leading term in gs is a ratio of Gamma functions.

@ In 11d, the effective action is similar, with /s — ¢, (and no gs), but
terms only up to D® R* are known.
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Analytic bootstrap for Mellin amplitude

The consistency conditions give:

: 1 Ci  Co(S% 4+ t2 4+ UP) + c3
MDD =262 -2w-2 "3 %
+0(1/c?).

where ¢4, ¢, C3, ... are arbitrary constants.

~ the flat space limit
@ Constraints on ¢4, ¢, C3, ...come from /

* SUSic localization
@ The flat space limit

" da 2 |2
f(S,T) = =t lim / de e“a® M (L S L T)

2117T2g§£g TL&,_’C‘O J 2ri 200 2« |
, . 315 |
gives|cy = 15¢(3) ;| o = TQ(S)
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Supersymmetric localization
@ SUSic localization gives exact results in SUSic theories, but
generally not for correlation functions of local ops.
@ |dea: __ _
z- [Dxe s~ [Dxestaw)

is independent of t. If {Q, W},0s > 0, then take t large and

| _s ] :
Z= e cuch g &% (one-loop determinant)
T {Qv}=0

(Ideally, this is a finite-dimensional integral.)
@ Can insert Q-invariant observables.

@ Generically, QO(X) # 0 b/c Q? = translation + R-symm rotation
and Q?0O(X) # 0 for a local operator O(X).

Silviu Pufu (Princeton University) 10-1-2019 18/ 32
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3. Supersymmetric localization: observables
So, SUSic observables can be:
@ integrated operators

@ local operators inserted at points where Q? = 0.

In this talk: we’ll relate two of the S,’s to integrated SUSic operators,
and we'll place the other two S,'s at points where Q? = 0.

Silviu Pufu (Princeton University) 10-1-2019 19/ 32
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3. Supersymmetric localization: observables

So, SUSic observables can be:
@ integrated operators

@ local operators inserted at points where Q% = 0.

In this talk: we'll relate two of the S,’s to integrated SUSic operators,
and we’'ll place the other two S,'s at points where Q? = 0.

Specific setup:

N =4 SYM N =4 SYM deform while preserving
on R* on S* Q € N = 2 superalgebra

Q? =0 only at
N and S poles of S*

Silviu Pufu (Princeton University) 10-1-2019 19/ 32
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Localization setup in 4d N/ = 2 SCFTs
N = 2 SCFT: R-symmetry is SU(2)r x U(1)R.

We will consider two multiplets:
@ conserved current: (J. K, ....J,)

J:3p, A =2 (scalarbilinear)
K:1,o,, A =3 (fermion bilinear)
@ chiral / anti-chiral multiplet: (A, ...) < interested in p = 2

Ap,/&p:‘lip, Aip

On S*, deformations preserving Q:
@ Real mass (using certain components of J and K):

m / d*x VGl + K]
o A(N); An(S).

Silviu Pufu (Princeton University)
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N =4SYMasan N =2 SCFT

SU(4)r SU(2)r x U(1)p x SU(2)¢
So: 20 (1,1)42 + (3,3)0 +(1,1)0 + (2,2) 41
——— =
Ao, Ao J
So consider
Sig- (7. 7) + 07 Ag(N) + 07 Ae(S) + m / (i + K) .
on S4 '
— 0 | Ami
where 7 = 5 + @
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N =4SYMasan N =2 SCFT

SU(4)r SU(2)g x U(1)g x SU(2)f
S,: 20’ (1,1)42 + (3,3)0 +(1,1)0 + (2,2) 41
N’ N —
Ao, Ao J
So consider
Sig.: 4(7.7) + 57 Ag(N) + 07 Bp(S) + m / (i + K) |
on &% '
_ 0 4ni
where T = 5 + o

@ Actually, up to Q-exact terms, 67 Ax(N) = [ d*x /gér O. and
07 Ax(S) = [ d*x /gdT Oz, where O, and O; are marginal ops

Z(1,7,0m,0T,m) = Z(7 + 01,7 + 0T, m) .

@ Itis enough to compute Z(r, 7, m) (part fn of A” = 2* on S%).
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Matrix model for A/ = 2* partition function

Pestun computed the S* partition function of the N = 2* theory

=

_ (a; — a))2H?(a; — &) N2
Z‘/ da H H(a,-—ajer)H(afﬂaj*_m) e |Zlnst|

where H is the product of two Barnes G-functions, and Z,s represents
the contribution of instantons localized at the N and S poles of S*.

@ Perturbatively at large N (and fixed \) one can ignore the
instanton contributions.
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N =4SYMasan N =2 SCFT

@ Then
0% log Z - C .
| - <A2(N)A2(8) [k [ G K)> (+)
m=

@ Using Ward identities -+ integration by parts + group theory to
relate A, A, J, K to operators in ' = 4 SYM, we have

*log Z

MR oo~ ~16¢C / dr do 13 sin2 HT(U V)
é;-rfﬁ_izf m=0 U U=1+r2—2rcos6

V=r?

2 2
~ 8 / Z a2 [ (V) (e
A AR I A U 2\ x

where the last equality is at leading order in 1/c.
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Matrix model for A/ = 2* partition function

Pestun computed the S* partition function of the N = 2* theory

f (a — &)°H?(ai — g)
Z= / da E H(a; — aj + m)H(a; — a; — m)

Ny 2
e 3 2% | Zingt|?
where H is the product of two Barnes G-functions, and Z,s represents
the contribution of instantons localized at the N and S poles of S*.

@ Perturbatively at large N (and fixed \) one can ignore the
instanton contributions.
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N =4SYMasan N =2 SCFT

@ Then
0*log Z B - C S
| - <A2(N)A2(S) [k [ G K)> (+)
m=

@ Using Ward identities + integration by parts + group theory to
relate A, A, J, K to operators in /' = 4 SYM, we have

O*log Z

MR oo~ ~16c / dr dé r3 sin2 HT(U V)
é;-rf')ZF m=0 U U=1+r?2—2rcos6

V=r?

2 2
~ 8 / T (V) (Y
A A I A U 2\ x

where the last equality is at leading order in 1/c.
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L ocalization constraints

@ Expandingin 1/, we obtain

¢y = 15(¢(3) «+— same as from flat space limit!
64c, + 28c3 = —1575((5), etc.
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Localization constraints

@ Expandingin 1/, we obtain

¢y = 15((3) «+— same as from flat space limit!
64c, + 28c3 = —1575((5), etc.

Comments:
@ ¢y derived in two ways — check of AdS/CFT beyond SUGRA.
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Localization constraints

@ Expandingin 1/, we obtain

¢y = 15((3) «+— same as from flat space limit!
64c, + 28c3 = —1575((5), etc.

Comments:
@ ¢y derived in two ways — check of AdS/CFT beyond SUGRA.

@ Combining flat space limit + localization, we obtain

1 315,

Co = —503 = TC(S)-
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L ocalization constraints

@ Expanding in 1/, we obtain

¢y = 15¢(3) «+— same as from flat space limit!
64c, + 28c3 = —1575((5), etc.

Comments:
@ ¢, derived in two ways — check of AdS/CFT beyond SUGRA.

@ Combining flat space limit + localization, we obtain

1 315 |
Co = —503 = TC(5)-

@ To fully fix all the constants at higher orders in the tree-level 1/
expansion, one would need more constraints.

e There are potentially more quantities that can be computed using
SUSic loc: 9% log Z/am“}mzo, squashed sphere partition function.
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Generalization to (S5:5:S5,Sp)
@ One can generalize the localization constraints to (S5,5,S,Sp)
(where Sp = tr ¢P) because:

e S, contains an A = 2 chiral / anti-chiral multiplet w/ scalar ops A
and A, that can be inserted at N and S poles of S*.

e The N = 2* partition function further deformed by these insertions
can be computed by a modification of Pestun’s matrix model

/da

which gives at leading order in 1/N:

—aj+ m)H(a; — aj —

H (ai — a)*H?(ai — &) } e~ X DiE - | 7 12
H(ai @)

OOrp Oz, log Z
(‘.)Tp (").?p IOg Z

I (Vw/7)? = Jo(V /1)

sinh? w

~ 4p/ dww
Jo

m=0
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Very strong coupling limit

@ So far we worked in the 't Hooft strong coupling limit.

@ “Very strong” coupling limit: N — oo, gym fixed. Use
¢ = (N? —1)/4 instead of N as before.

@ For <82828282>, expect:

8 1 1 1
M(s, 1) = c(s—2)(t-2)(u-2) N b(T)W i 02M1-;00p(s )
1
+ 572 dy (7)(8% + 12 + UP) + do(T) | + -+ -,
where 7 = 2 + 47L as before.
9vm

@ These correspond to R, f(7)R*, g(+)D*R* in the flat space limit.
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Prediction for Zs: in the very strong coupling limit

@ Flat space limit requires

60 =
Wgsp(‘ﬂ 7).

(Im 7

b(r) =

_q/r:

where E3/2(7, 7) = - m m£(0.0) W IS an Eisenstein series.

@ Relation between (S5,5,5,S,) and S* partition function implies

0% log Z V2c1/4
By = 4clog gym — 32 —75—&ap(T, 7))+

m=0

+ (hol + anti-hol ambiguity) .
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Prediction for Zs: in the very strong coupling limit

@ Flat space limit requires

60 .
b(’]‘) f— Wg3/2(7'. T) ,

(Im 7

—-3/2 . . . .
where E3/2(7,7) = - m.m4£(0.0) W%n_ﬂﬂ? IS an Eisenstein series.

@ Relation between (S5,5,5,S,) and S* partition function implies

0% log Z V2c1/4

am2 = 4clog gym — W&a/z(ﬂ T) oo

m=0

+ (hol + anti-hol ambiguity) .

@ To check the ¢'/4 term we would need to sum the instantons in the
S* partition function of the mass-deformed A/ = 4 SYM theory
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ABJM theory at k = 1,2
A11A2
U(N) U(N)
y

By, B>

@ The 3d U(N)x x U(N)_x ABJM theory is dual to M-theory on
AdS, x S" /7, andhas N =8 SUSY fork =1,2and ' = 6
SUSY for k > 2.

@ Two params: (N, k). Instead of N use

Here, (T,. T,s) x Cr.

Silviu Pufu (Princeton University) 10-1-2019 29/ 32

Pirsa: 19100041 Page 60/63



ABJM theory at k = 1,2

@ N = 8case (k = 1,2): the analog of the 20" op from N = 4 SYM
is the superconf. primary of the stress tensor multiplet:
So A=1, j=0, 35. of SO(8)R.
@ 4-pt function:
. 1 1 1 1 1 1
(S525,5,S,) = (disc.) + t+—st+t=+t w5 t—=+-—7+

oo oo o ocp

corresp to: SG tree , R* (1 polyn soln), D*R* (2 polyn solns),
D®R* (3 polyn solns), etc.

 the flat space limit

o To fix constants, use < . L
0 . \ SUSic localization: | Zgs(mq, my)

known to all ordersin 1/N !l
@ Use both 9*Z/om? and 0*Z /om2oms.
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ABJM theory at k > 2 and fixed A = N/k

@ Inthe large N fixed A = N/k limit — type IIA on AdS,; x CP3:

L8 5122
— 472 )\? 2~ .
_s 9s 3Cr
@ S;isa A =1op.in150of SO(6)r. Stress tensor multiplet is only

1/3-BPS.

@ 4-pt function

| 1 11
(52528,S,) = disc. + — |1+ — + —
4 Az 2

VA+1+- ]+

_J[_ .

_2
c2
corresp to: SG tree, R* (2 polyn solns), etc.

o —)@7- and multlply different functions of s, t.
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Conclusion

@ A combination of techniques (supersymmetric localization, SUSY
Ward identities, analytic bootstrap in Mellin space) can be used to
study holographic correlators beyond the SUGRA approximation
in both 4d /' = 4 SYM and 3d ABJM theory.

For the future:

@ Explore other constraints from supersymmetric localization,
e.g. squashed sphere partition function (ongoing work).

@ Loops in AdS and Ioop scattermg amplltudes (1 Ioop lnN 4
SYM done [Alday. Bissi 17: . Paul 17, '18; Chester '19] ).

@ Combine integrated constraints with numerical bootstrap (ongoing
work).
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