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Abstract: Topology illuminates properties of geometric spaces which are independent of scale.&nbsp; Scale-independent features of physical
systems play an important role, for example when deducing the large-scale behavior from a small-scale description.& nbsp; After an introduction to
basic topological ideas, | will discuss two joint results with Mike Hopkins, one an application to string theory and the other an application to
condensed matter theory.
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Main Theorem

M’ (n,H,) := moduli space of reflection positive)invertible
. T
n-dimensional extended eld theories
with symmetry group H,
y

F.-Hopkins): There is a 1:1 correqpondence
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Main Theorem

M'  (n, H,) := moduli space of reflection positive invertible
n-dimensional extended field theories
with symmetry group H,
y

F.-Hopkins): There is a 1:1 correspondence

oM (n, H,) = [MTH, £"*'1Z]

F'.-Hopkins): There is a 1:1 correspondence

moM'(n, Hy) = [MTH, 2" 1Z]
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Time-reversal invariance of M-theory

Parity invariance question (Witten): Can we consistently formulate
11-dimensional M-theory on unoriented manifolds?

The anomaly « is an invertible 12-dimensional topological invertible field
theory: o = apg ® o, where RS = Rarita-Schwinger and C' = C-field

F.-Hopkins): The total anomaly « is trivializable

F.-Hopkins): The following six m.-manifolds generate
the group mioMm, ® Zo:

UIY(’,)ﬂ ﬁ:)_ ) (HY(,),* 0)? (U'l ’ )\)

(K x HP?,}), (RP* &pi)x B, (RP‘#RP*0)x B.

I'.-Hopkins): There are two trivializations of «
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Bott manifold
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Invertible topological phases of matter

M(n, H,,) moduli space of gapped invertible (n — 1)-dimensional
lattice systems with symmetry type H,,

The deformation class of a quantum system is
determined by its low energy behavior

The low energy physics of a gapped system is
well-approximated by a topological* field theory

We approximate discrete nonrelativistic lattice models with continuous
relativistic field theories. A mathematical justification would be nice. ..

We compute using the bordism formula

moM'(n, Hp) = [MTH, 2" IZ]
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Computations

Class DIII (Pin™):

ker ® —s FF,(Pin™) o TP, (Pint) — coker ®

Z 7./16Z
7./27. 7./27.
7./27. 7./27.

0 0

Z 7./27.

FF,, is the group of free fermion theories (KO group)
TP,(H)=moM'(n, H,) is group of topological phases (Main Thm)
® is the map described above (essentially ABS)

The F'F,, groups are well-known. Many TP, appear in the
condensed matter literature (together with ®) via other methods
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Interacting fermionic topological insulators/superconductors in 3D

Chong Wang and T. Senthil
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02159, USA
(Dated: June 1, 2015)

Symmetry Protected Topological (SPT) phases are a minimal generalization of the coneept of
topological insulators to interacting systems. In this paper we describe the classiflcation and prop-
erties of such phases for three dimensional(3D) electronie systems with a number of ditlerent syn-
metries. For symmetries representative of all classes in the famous 10-fold way of free fermion
topologieal insulators/superconductors, we determine the stability to interactions. By combining
with results on bosonic SPT phases we obtain a classification of electronie 3D SPT phases for these
symmetries. In cases with a normal U(1) subgroup we show that this classification is complete.
We deseribe the non-trivial surface and bulk properties of these states. In particular we discuss
interesting correlated surface states that are not captured in a free fermion description. We show
that in many, but not all cases, the surface can be gapped while preserving symmetry if it develops
intrinsie topological order.

CONTENTS A. Electric and thermal hall conductance
mismatch 13
I. Introduction 1 ) . o
B. Tmplication of n trivinl monopole 13
I1. Generalities 2 X
A. Surface terminations 2 References 14
1. Symmetry broken surface 3

2. Symmetry llt‘l'\l'r\'inu surface I(:])Hi(:j:i{'.’[]

I. INTRODUCTION

order 3
B. Gauging the symmetry: # terms 3

C. Gauging the symmetry: bulk monopoles Much of our current understanding of topological in-
nnd surfnce states 5 sulators /superconductors is informed by models of free
fermions and their associated band structure'. Within
IT1. U(1) x 3 " ATl elass 5 this description there is a very mature understanding of
A. 8 Dirac cones: triviality G the possible such phases in diverse dimensions. A clas
“ l l)i]':u' COnes:; ]'('i?\'fnl H]"Il [] .‘i[i('iltil)" (if 1||('.\(' [l'l'l' i‘\'l':”]l][l I(ll“)](lui(':ll IT]“I.\(‘P\ ('Kiﬁ[.‘"‘z
C. 2 Dirne cones: Krnmers monopole 7 vielding results that depend on the global symmetry and
1. Surface topological order 7 the spatial dimensionahty. A defining charactenstic of
D. 1 Dirac cone: # = 7 ] such phases is the presence of non-trivial surface states

1. Non-Abelian Surface ll)l)nlogit'iil order 8 that are ]nnlc‘rh'(] by the global symmetry.
E. Zy x :ﬂj classification N The free fermion l](‘ht'l'i[)fil)ll 8 l'lt‘urly the :ip]}luln'i:dv
starting point to discuss the possibility of topological in-
V. L{‘. with 72 = —1: DIII Class 8 sulators /superconductors in weakly correlated materials
A. 4 Majorana cones: doubled semion-fermion In recent years however attention has turned toward ma-
surface state 09 terials with strong electron correlations as possible plat-
B. 2 Majorana cones: semion-fermion surface forms for similar phenomena. These include the mixed
state 9 valence compound® SmBg, and iridium oxides on py-

o . i A
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IV, Z5 WITH 7% = —1: DIII CLASS

[n this section we apply the results obtained in Sec. 111
to superconductors with only time-reversal symmetry
(the DIII class). This was recently discussed in Ref.
22 using powerful Walker-Wang methods. We reproduce
part of the results there in a physically simpler and con-
structive approach® following the ideas of Ref. 21 and
the previous section.

At free fermion level, the DIII class superconductors in
3D are classified by Z. with an integer index » sienifying
the number of gapless Majorana cones on the surface
protected by time-reversal symmetry:

I
H=> \(pods + pua) i (17)

i=1
If ir is even (1 = 2n), one can group the Majorana cones
into n Dirac cones 4y = ya; 1 + iyz. and the theory
looks exactly the same as Feq. (9). The (1) symmetry
i =« ’”i;' s now an emergent symmetry af low CNeTEy.

We can instead consider the £7(1) as a microscopic syin-
metry, apply the results in Sec ] to obtain interacting
gapped surface states, and then break the U(1) syvimme
try explicitly by adding fermion pairing term. A similar
strategy was nseful in the Walker-Wang approach??. For
the n N 16G) state, the resulting surface is triv-
iallv gapped, and further breaking the U(1) syvimumetry

does not introduce anything nontrivial.  Henee the &

classification from band theory reduces to Z4 with in-
ternction. For the oo 4 (1 = 8) state, the resulting sur-
face is topologically ordered, but all the guasi-particles
are chorge-neutral under the U(1), henee breaking U(1)
symmetry does not affect anything either. These estab
lish the 1 16 state as a trivial one, and the S state
as equivalent to a boson SPT. which are consistent with
the results in Rel. 220 The n = 2 (v 1) and n 1
(12 = 2) states, however, have surface topological orders
involving the (1) symmetry non-trivially, hence need
more careful examination.
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HOMOTOPY THEORETIC CLASSIFICATION OF SYMMETRY
PROTECTED PHASES

JONATHAN A. CAMPBELL

ABSTRACT. We classify a number of symmetry protected phases using Freed-
Hopkins’ homotopy theoretic classification. Along the way we compute the
low-dimensional homotopy groups of a number of novel cobordism spectra

1. INTRODUCTION AND OUTLINE

1.1. Introduction. Recently, symmetry protected topological phases (SPTs) have
received a great deal of attention. Not only are they interesting phases of matter
outside of the Landau symmetry breaking classification, but their realizations in na-
ture would have applications to, for example, quantum computation. Very roughly,
two systems are in the same SPT phase if their Hamiltonians are gapped, have
an action by a group GG, and can be bmoothly deformed into one another equiv-
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7.9. Z/2my charge superconductor. We now compute M (Spin xz,2Z/2m) for
any m. We first note that the computation for m odd is uninteresting since
the extension is trivially split in that case. We are thus reduced to computing
M (Spin xz/2Z/2"). The computation proceeds in much the same way as above,
but with one technical difference.

Let G = M (Spin xz/2Z/2"). As before, this fits into an extension

Z/2 G — SO xZ/2"!
and we get a corresponding pullback diagram

BG > B Spin

| |

BSO x BZ/2""! —— BSO
(1d,2¢)

where again, 2§ is twice the sign representation. This gives us the equivalence
MG := M(Spin xz,2Z/2") ~ M Spin A(BZ/2" ).

We do not have an analogue for Atiyah’s succinct identification of the homotopy
type of (BZ/2" )% but we need only know H*(B(Z/2")%;Z/2) as an A(1)-
module. For this, the Thom isomorphism suffices. The A(1)-module structure of
H*((BZ/2™)%;Z/2) will be the same as H*(BZ/2") but missing the bottom two
cells.

First, we need the A(1) structure of the cohomology H*(BC2n;Z/2). We note
that by standard computations [23, p.251], H*(BCan; Z/2") = Z/2"[a, f]/(a? =
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Invertible phases on a particular space

Motivated by ideas of Kitacv, we deduce

Let Y be a locally compact topological space equipped with
the action of a compact Lie group G. Then the group of invertible
topological phases on Y of symmetry type (H, p) is the Borel-Moore
equivariant homology group E{,”S’} yu(Y), where £ = Ep ) = el il

Topological crystalline phases are a special case.
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