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Abstract: The event horizon and the Cauchy horizon of an extremal black hole admit conserved charges associated with scalar perturbations. We
will see that these charges are externaly measurable from null infinity. This suggests that these charges have the potential to serve as an
observational signature for extremal black holes. The proof of this result is based on obtaining precise late-time asymptotics for the radiation field of
outgoing perturbations.
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The main question

» |Is there an observational signature for extremal black holes?

» That is, is there a distinguishing feature in the dynamics of perturbations
of extremal black holes? If yes, is this measurable from future null infinity?

r
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Why extremal black holes?

Theory

» Non-genericity versus reality: a = M,q = M, where M mass, q charge, a
angular momentum.

» Uniqueness properties (Chrusciel, Figueras)
» Mass minimizers (Dain, Kunduri)

> Applications in supersymmetry, quantum gravity, string theory (Strominger,
Vafa)

» Electromagnetic and gravitational signatures (Gralla, Lupsasca, Porfyriadis,
Khanna)

» Turbulent gravitational behavior (Lehner)
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Why extremal black holes?

Practice

> Vast astronomical evidence for near-extremal black holes.

» Rees et al. (The distribution and cosmic evolution of massive black hole
spins, Astrophys. J.) report that “the spin distribution is heavily skewed
toward fast-rotating Kerr black holes” and that “about 70% of all stellar
black holes at all epochs are maximally rotating”. Gas accretion dominant
effect and spins black holes up.

» First black hole candidate (1971) Cygnus X-1: Gou et al. (Confirmation via
the continuum-fitting method that the spin of the black hole Cygnus X-1 is
extreme, Astrophys. J.).

» Many examples of stellar and supermassive near-extremal black holes.

» We refer to: Brenneman (Measuring the angular momentum of supermas-
sive black holes, Springerbrief 2013).

» Highly spinning black holes in Advanced LIGO data (Zackay et al).
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Scalar perturbations
» Investigate the evolution of solutions to the wave equation
Ogy =0

on Reissner—Nordstrom backgrounds.

event me— e
horizon 2. :
Study the behavior of 1
and its derivatives

—

Prescribe on ¥y initial data for
the wave equation [,1) = 0
el E

» We assume that the scalar perturbation 2 is initially supported near the
event horizon.

5/34
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Preliminary remarks

For horizon-localized perturbations to register on null infinity we would need
measurements along null infinity at very late times.

This suggests that we need to derive the precise late-time asymptotics for scalar
perturbations and their radiation field. In particular, we need to “see” the power-
law tails of scalar perturbations (at null infinity). Beyond QNMs.

Define on null infinity:

s{ltud) = iu2 : ((T”‘/-‘)lzi (2, 1‘))) + SL r|z+ (@, V) dudy

4M i I+tNn{u>u>0}

Here u is a retarded time on Z1. It turns out that for both sub-extremal RN
and ERN we have

lim s[y](u,¥) = s[y] < oo

(i 4= =

6 /34
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A signature of extremality at null infinity

The main result is the following:

For all scalar perturbations on sub-extremal RN we have s[i)] = 0

Moreover,

For generic perturbations of ERN we have s[¢)] # 0

Concluding,

If s[1p] # O then the black hole is ERN
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Is it possible to numerically confirm this result?

Yes. Burko, Khanna, Sabharwal can simulate the evolution of the radiation
field for long time which enables them to confirm our result and obtain several
interesting extensions.

[Figures below are courtesy of Khanna et al who made use of the supercomputing
resources of UMass Dartmouth’'s CSCVR center]
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Numerical confirmation

The plot below confirms that s[](u,¥) — 0 as u — oo for sub-extremal RN.

QM =0.8

3 . y . . g .

log | s{\psi] |

3.5

log u
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ERN simulation
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For perturbations of ERN, Khanna et al obtain
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Hence, s[¢](u, ) — ¢ where ¢ # 0 as u — oo on ERN.
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Transient behavior of the signature s[1](u)
The plot of s[¢|(u) for various values of a/M (plot (a)) and ¢/M (plot (b)).
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To capture the transient signature more appropriately we define

AsyY](u;a/M) = s[y|(u;a/M) — s[y](u;a/M = 1)

14 /34
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Signature for near-extremal black holes |: fixed intermediate u

Plot of As[v](u;a/M) for a fixed intermediate time u. Slope of lines =1.
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Signature for near-extremal black holes Il: fixed 1 — a/M

Plot of As[v](u;a/M) for all intermediate times u.
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Transient signature formula

Combining the previous results yield for intermediate retarded times (soon after
the QNM phase at u=100M and until around u=2000M) the following

s[¢](u,a/M) = s[y](u,a/M = 1) + 0.065u" - (] - %)

for NERN and
s|Y)(u,q/M) = s[y)(u,q/M =1) + 0.15u° - (1 o )
’ ’ ' M

for NEK. The “transient hair" grows quadratically in the intermediate regime
until its length becomes short and eventually vanishes. For values less or equal
tol- & =10 ® this transient behavior is present.
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Next: Physical meaning of s[¢]. Background and some ideas
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Next: Physical meaning of s[¢]. Background and some ideas
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Late-time asymptotics

Theorem (Angelopoulos, A., Gajic)

If 1 is a solution to the wave equation on a sub-extremal Reissner—Nordstrom
space-time with smooth compactly supported initial data then

Asymptotics in the exterior region

V|n Y|r=r rY|z
8IM[y]- 773 | 8IW ] - 773 | —=2IV[y] - 772 —8MIM[¢)]logT - 773

where

: M [ : M [ 1 : o :
1 (1) [d{,] — = ]JJ ({S‘l —+— — ——r ')f Jd” ?“"d‘T'dQ.
An J{t=0}NSge dm J{t=0} or

Comments:

> Generically I'V[¢)] # 0
» We further obtain (2¢ 4 3)-asymptotics (Price's law).

20/ 34
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/U){t,ﬁ] in terms of the radiation field on ZT

Wy = M f ri

AT Jz+n{r>0)

21/34
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Weak-field dynamics

» In view of the expression of I'")[¢], in terms of the radiation field, we obtain
that the late time tails are dictated by the weak-field dynamics, namely by
dynamics at very large r.

, M f
lim (Tz - (7'1/;)|-1) = / ry|z,
¢ Jz+n{r>0}

T=>00
i : 2M [
lim (T'{ ¢ 'l/f’|';-—h’) == Y|z,
v T JZ+n{r>0}
lim (Td -11.’|-H) = — ry|z,
T— 00

T Jz+n{r>0}

» The first identity above implies that for any sub-extremal RN we have

S [(/?] =
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The coefficient /(1) and the Newman—Penrose constant

» The Newman—Penrose constant gives rise to a conservation law along null

V.

infinity.
black hole

The constant is equal to

NPW’] — / ‘limn bl Ou (T)
ﬁ.“, ey e ]

N P[y] = 0 if ¢» has compactly supported initial data.
Remark: N P[dyyp] = 0. So, N P[] is an obstruction to inverting ;1.

If NP[)] =0 then we can canonically define 9, '+ (as long as 9, # 0)
and, generically, obtain

NP[o; '] # 0.

In fact: 1V[¢)] = NP[O; '4] and can be determined in terms of the initial
data of 1) or the radiation field of 1.

IV is an obstruction to inverting 7.

23 /34
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Firstly, we have the following

Proposition (A.)

If1) satisfies the wave equation on extremal Reissner—Nordstrom then the integral

' 1
Hip) = - [ (Y¢+ ==1)dvol
[¥] /S( v 21\.-1‘]) &

is independent of 7. Here Y is transversal to the horizon.

25/34
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“Outgoing radiation”

Solutions 1) with H[v] # 0 and compactly supported initial data

26 /34
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H 1] as a “horizon hair”

» Qutgoing perturbations and perturbations (H [¢)] # 0) satisfy along the
event horizon:

1) Slow decay: v(7,9) ~ 2H[y] - 1
2) Non-decay: Y(7,9) ~ — - H[¢)]
3) Blow-up: YY3(7,9) ~ - H[Y] - 7

» H[y|: "horizon” “hair” since

1) Energy density measured by incoming observers: T',...[¢)] ~ H[{)] where
T is the E-M tensor,
2) |Y* 4|, | T, [¢]] < 0 away from the horizon.

b]

» Later extensions/applications by: Reall, Murata, Casals, Zimmerman, Gralla, Tana-
hashi, Bizon, Lucietti, Angelopoulos, Gajic, Ori, Sela, Tsukamoto, Kimura, Harada,
Hadar, Dain, Dotti, Godazgar, Burko, Khanna, Bhattacharjee, Cvetic, Pope,
Chow, Berti et al, Cardoso et al,...

27 /34
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Measurements at Z+

Let's consider outgoing radiation.

» Along Z": The horizon hair registers in the asymptotics

7"‘!/.-‘|I ~ (']A[[[ _“2[(1)) T 2.

T+ {r>0} rv dS2dT yields precisely that

Recalling that (V) = & |

4 .

1 ol 1 [
— lim 7°- (7¢)|7+ + / -
A4M 7500 ( d')|i* 8 IZ+n{r>0)} d|JJ [l,[]

or
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Observational signature s[¢)] on Z

Recall that

; (] 2 |
sfy) = NYi 1_1171\11 T (rY) |+ + o —— r|z+
o0 . N{r>0

and

s[y] = H[y]

We conclude that

» Information “leaks” from the event horizon of extremal black holes to
null infinity.

» Extremal black holes admit classical externally measurable hair.

» The horizon hair H[y] could potentially serve as an observational sig-
nature.

31/34
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Physics Literature

» Work by Reall, Murata and Tanahashi suggests that perturbations of initial
data of extremal R—N in the context of the Cauchy problem for the Einstein—
Maxwell-scalar field equations exhibit a version of the horizon instability.

» Work by Casals—Gralla=Zimmerman and subsequently by Hadar—Reall ob-
tained that the decay rate for non-zero azimuthal frequencies along the event
horizon on extremal Kerr is % and for the first-order transversal derivative

%

is \/7 (amplified instability).
» Recent work by Gralla=Zimmerman provided a systematic approach to decay

(or growth) rates of modes of fields in terms of their scaling properties on
extremal backgrounds.
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Thank you!
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