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Abstract: Query complexity is a common tool for comparing quantum and classical computation, and it has produced many examples of how
guantum algorithms differ from classical ones. Here we investigate in detail the role that oracles play for the advantage of quantum algorithms. We
do so by using a simulation framework, Quantum Simulation Logic (QSL), to construct oracles and algorithms that solve some problems with the
same success probability and number of queries as the quantum algorithms. The framework can be simulated using only classical resources at a
constant overhead as compared to the quantum resources used in quantum computation. Our results clarify the assumptions made and the conditions
needed when using quantum oracles. Using the same assumptions on oracles within the simulation framework we show that for some specific
algorithms, such as the Deutsch-Jozsa and Simon&€™s algorithms, there smply is no advantage in terms of query complexity. This does not detract
from the fact that quantum query complexity provides examples of how a quantum computer can be expected to behave, which in turn has proved
useful for finding new quantum algorithms outside of the oracle paradigm, where the most prominent example is Shor&™s algorithm for integer
factorization.
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Quantum computation and the
additional degrees of freedom in a physical system
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There are several proposed resources for quantum computational speedup

H(Xln H(X]n /71

Ugr(x)
H

Proposed resources:
® Quantum Superposition and Interference
®* Quantum Entanglement
® Quantum Nonlocality
® Quantum Contextuality

® Continuity of Quantum state-space
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Proposed resources:
® Quantum Superposition and Interference
®* Quantum Entanglement
® Quantum Nonlocality
® Quantum Contextuality
Continuity of Quantum state-space

R/W in additional degree of freedom
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Turing machines and functions as gate arrays

A one-tape machine corresponds to
a simple irreversible gate array

Work tape NG

010(0]0]|0 state
machine
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Reversible computers use a reversible gate array

A three-tape machine doesn't quite correspond to the most common
way of drawing a reversible gate array

Finite
state
machine

"[Olololololololololollllm\ O‘Inputtape
. |0]010[0]0[Ololololololo[o]o[\ %]Work tape

o [OrloIOIOIOIO"OIOlO|0|07]07|70|0|0|”0j Output tape
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Reversible computers use a reversible gate array

The work tape corresponds to a calculation log on ancillary bits

Finite
state
machine

- |ofo|o]ofofofo]ofo]of1]1]0 0] Input tape

- [o[o[oTo[o[o[ofolo[o[o o o]o[ o] werk tape

- [o]ofofo]ofo]ofo[ofo[ofo]o]o]o[0]Output tape
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The reversible gate is often built using Bennett’s trick (1973)

Add a tape for the copy of the result

Finite
state
machine

~101010(0]|0]0]0 010111 110(0| Input tape

- |oJofofo]ofo]ofo]1]1]@]1]1]oNo]0]Work tape

' |ﬂ|0[0|0|0[0|0|0[0|0]6[1|1]0|1 0| Output tape

. |O|0IO|OIOIO|O|0I0|0]0I0|0]0|0|0|OlltputCopy

”~
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Even when not built using Bennett's trick, the gate is unitarily equivalent
to one that is

This can be clarified by enclosing Bennett's trick as a composite

LINKOPING
II.“ UNIVERSITY

Pirsa: 19090094 Page 10/51



Many quantum algorithms use Hadamard transformations

The Deutsch-Jozsa algorithm is one example

Her HE =17
Usr(x)
H

The standard explanation is that all the possible input values are
input at once,
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Many quantum algorithms use Hadamard transformations

The Deutsch-Jozsa algorithm is one example
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The standard explanation is that all the possible input values are
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LINKOPING
II." UNIVERSITY

Pirsa: 19090094 Page 12/51



Many quantum algorithms use Hadamard transformations

The Deutsch-Jozsa algorithm is one example

A HE =17
Usr(x)
H

The standard explanation is that all the possible input values are
input at once, the calculation is done in parallel for all of them, and
then all the parallel results are combined by interference to find the
result
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Many quantum algorithms use Hadamard transformations

This can be clarified by enclosing Bennett's trick as a composite

%

-10)

H

Our questions are: |s the standard explanation correct?
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Reminder: the “Phase kick-back” identity
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This transforms the function gate
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This transforms the function gate
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The function evaluation is viewed from a different degree of freedom

/7*\

H

® The quantum algorithm contains the evaluation of transformed
functions

®* |nformation from the “target” system is copied into the evaluation
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The function evaluation is viewed from a different degree of freedom

H

The quantum algorithm contains the evaluation of transformed
functions

Information from the “target” system is copied into the evaluation

Ancillas are zeroed, so the information (that cannot be erased)
must influence the “control” output
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The function evaluation is viewed from a different degree of freedom
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The Hadamard transform enables access to the additional degree of freedom:

use the phase space

Spekkens’ toy model

® Each spin-1/2 system is associated with a two-bit “ontic
state” that singles out a point in the associated phase

space

Each spin-1/2 measurement outcome is associated with an
“epistemic state”, that plays the role of the quantum state

The uncertainty relation is translated into the “knowledge
balance principle”: measuring one of the ontic bits
randomizes the other
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Spekkens’ toy model reproduces

In the toy model

Noncommuting measurements
Uncertainty

Interference

Remote steering

No cloning

No broadcasting

Mutually Unbiased Partitions
Superdense coding
Entanglement monogamy

Teleportation

many of the quantum predictions

Not in the toy model

® Contextuality
Nonlocality
Quantum-computational speedup

Continuum of states

Positive Operator Valued Measures
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15/28
Including quantum contextuality in the model requires more memory than
two bits per system

* Kleinmann, Giithne, Portillo, JAL, Cabello (2011): lower bound of 5 bits of
information

» Rewrite the model into the language of Mealy machines
» Extend the Mealy machine to include Peres-Mermin-square contextuality

10) /1)
14+)/1=)

) v — o/

[-+)/1-)
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Including quantum contextuality in the model requires more memory than
two bits per system

* Kleinmann, Giihne, Portillo, JAL, Cabello (2011): lower bound of 5 bits of information

® The knowledge balance principle becomes a knowledge imbalance principle, because
there is always more knowledge one lacks than one has
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15/28
Including quantum contextuality in the model requires more memory than
two bits per system

Kleinmann, Giihne, Portillo, JAL, Cabello (2011): lower bound of 5 bits of information

The knowledge balance principle becomes a knowledge imbalance principle, because
there is always more knowledge one lacks than one has

Harrysson (2016): upper bounds for small number of qubits
Karanjai, Wallman, Bartlett (2018): full simulation requires at least n(n—1)/2 bits
Lillystone and Emerson (2019): Explicit model with (2n+ 1)(n+ 1) bits

» Model is symmetric-always-1-epistemic
» Also improves lower bound to (2n+1)(n - 1) bits
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Spekkens’ toy model reproduces many of the quantum predictions

In the toy model Not in the toy model
Noncommuting measurements
Uncertainty

Interference Quantum-computational speedup?

Remote steering Continuum of states
No cloning
No broadcasting

Mutually Unbiased Partitign
Superdense coding
Entanglement monoga
Teleportation
Positive Opera alued Measures

Contextuality

Nonlocality
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How much contextuality do you need to do Deutsch-Jozsa for 3-bit inputs?

0) —F— ~+

Usf(x)
1) —#

1

¢ Determine if f is balanced or constant

® One- or two-bit input function oracles are in the
Clifford group, and also in Spekkens' toy model

® Three-bit input or larger function oracles are not
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How much contextuality do you need to do Deutsch-Jozsa for 3-bit inputs?

10) —F— ~+
] U (x)
1) —#

Determine if f is balanced or constant

One- or two-bit input function oracles are in the
Clifford group, and also in Spekkens' toy model

Three-bit input or larger function oracles are not

No contextuality is needed but nonetheless, three-bit
input oracles can be realized
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Deutsch-Jozsa in our framework

® A balanced oracle has the center CNOT, a constant oracle has not
® Measurement after the final Hadamards will reveal whether it is balanced or constant

® The overhead is constant, a factor 2
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Simon’s algorithm, that finds the generator of a hidden order-two groug
can also be efficiently realized

Ugf(x)

The function is such that f(x) = f(y) iff x= y & s for
a secret s

Determine if s is nonzero (or find s)

Needs an exponential number of classical function
calls, but only O(n) quantum oracle calls

Our framework also finds s in O(n) oracle calls
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19/28
Simon’s algorithm, that finds the generator of a hidden order-two group,
can also be efficiently realized

H®"

Random

phase

The function is such that f(x) = f(y) iff x =y @ s for
a secret s

Determine if s is nonzero (or find s)

Needs an exponential number of classical function
calls, but only O(n) quantum oracle calls

Our framework also finds s in O(n) oracle calls
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Surely this is impossible, there are theorems!

Theorem (Simon, 1997)

Let O be an oracle constructed as follows: for each n, a random n-bit string s(n) and a
random bit b(n) are uniformly chosen from {0,1}" and {0, 1}, respectively. If b(n) =0,
then the function f,:{0,1}"” - {0,1}" chosen for O to compute on n-bit queries is a
random function uniformly distributed over permutations on {0,1}",; otherwise, it is a
random function uniformly distributed over two-to-one functions such that

fo(x) = fo(x ® s(n)) for all x, where & denotes bitwise exclusive-or. Then any PTM that

queries O no more than 2"* times cannot correctly guess b(n) with probability greater
than (1/2) +27"/2, over choices made in the construction of O.

The important detail here is that f,: {0,1}” - {0,1}", which is not the case in quantum
computation. Nor is it the case in our framework.
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What if | give you the function as a reversible gate array?

x
A~
%

T L 4

== O~,RO+~=OO

0
1
2
3
4
5
6
;

In most cases, our simulation will work, but not always (because our Toffoli gives
systematic errors)

But you are outside the oracle paradigm

It

1 n 1
There are (23__1) ~ 22" possible functions (for Deutsch-Jozsa, even more in Simon's),

and many more possible gate arrays

It is not even possible to transfer that much information from you to me in
polynomial time
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Superposition, or quantum parallelism, is not a good explanation

(~1)[£(x))

® These two realize the same function, and both are unitary
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Superposition, or quantum parallelism, is not a good explanation

H

® These two realize the same function, and both are unitary

®* But the quantum algorithm gives radically different outcomes
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H

® These two realize the same function, and both are unitary
¢ But the quantum algorithm gives radically different outcomes

® "All the possible input values” are still superposed, but the lower
quantum algorithm fails
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® These two realize the same function, and both are unitary
¢ But the quantum algorithm gives radically different outcomes

® "All the possible input values” are still superposed, but the lower
quantum algorithm fails
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What about Shor’s algorithm?

1 X

0 0

£

x8% (mod 15) x8 (mod 15)

Find period of a* mod N

Corresponding classical algorithm is O(e")

. . . 3h
* Best known classical algorithm is O(eV")
® Quantum algorithm is O(n?®)

If you do not “compile” the circuitry, even
factoring 15 is outside the Clifford group
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What about Shor’s algorithm?

dom phase

N

x8% (mod 15) x8 (mod 15)

Find period of a* mod N

Corresponding classical algorithm is O(e")

. . . 3h
* Best known classical algorithm is O(eV")
® Quantum algorithm is O(n?®)

If you do not “compile” the circuitry, even
factoring 15 is outside the Clifford group
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Shor’s algorithm in complementary pass-transistor logic

S ~—
I?\verst
Fourier L.
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Shor’s algorithm in complementary pass-transistor logic

a=7 a=§ a=13
550=0.93 550=0.98 S50=0.98

Proban: ity
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® There are systematic errors
® (...but they are on par with the other state-of-the-art experiments)

® Asymptotic behavior is unclear (at the moment)
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Grover’s algorithm

® Find x such that f(x) =1
¢ Classical algorithm is O(2")
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Grover’s algorithm

\02\ Error correction
landdm ph; _ '

| 1) s

® Find x such that f(x) =1
® (lassical algorithm is O(2")

* Quantum algorithm is O(2"/?)
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Grover’s algorithm

0)

10) —

® Find x such that f(x) =1
(Deduce the color of the controls)

® Classical algorithm is O(2")

* Quantum algorithm is O(2"/?)
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Grover’s algorithm

0)

10) —

Find x such that f(x) =1
(Deduce the color of the controls)

Classical algorithm is O(2")
Quantum algorithm is O(2"/?)
QSL one-shot algorithm is O(2"/n)
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Conclusions

Quantum algorithms realize the evaluation of transformed functions
Information from the “target” system serves as input in the evaluation

This information must influence the “control” output (~reversibility)

You have access to an additional degree of freedom to use in your calculation
The additional degree of freedom reveals some structure of the function

Some care is needed when formulating separation theorems

Superposition and interference are not the resources you are looking for
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