Title: Mutliplicative Bell inequalities
Speakers: Amit Teeni, Bar Peled

Series: Quantum Foundations

Date: September 04, 2019-3:30 PM
URL: http://pirsa.org/19090092
Abstract: Bell inequalities are important tools in contrasting classical and quantum behaviors. To date, most Bell inequalities are linear combinations of statistical correlations between remote parties. Nevertheless, finding the classical and quantum mechanical (Tsirelson) bounds for a given Bell inequality in a general scenario is a difficult task which rarely leads to closed-form solutions. Here we introduce a new class of Bell inequalities based on products of correlators that alleviate these issues. Each such Bell inequality is associated with a non-cooperative coordination game. In the simplest case, Alice and Bob, each\ having two random variables, attempt to maximize the area of a rectangle and the rectangleâ $\epsilon^{\mathrm{TM}_{\mathrm{S}}}$ area is represented by a certain parameter. This parameter, which is a function of the correlations between their random variables, is shown to be a Bell parameter, i.e. the achievable bound using only classical correlations is strictly smaller than the achievable bound using non-local quantum correlations We continue by generalizing to the case in which Alice and Bob, each having now n random variables, wish to maximize a certain volume in n-dimensional space. We term this parameter a multiplicative Bell parameter and prove its Tsirelson bound. Finally, we investigate the case of local hidden variables and show that for any deterministic strategy of one of the players the Bell parameter is a harmonic function whose maximum approaches the Tsirelson bound as the number of measurement devices increases. Some implications of these results are discussed.

- In existing Bell-type inequalities, the Bell parameter is the sum of correlations between measurements made by spacelike-separated parties
- We present a new class of Bell inequalities, which are based on a product of correlations

- What are the classical (Bell) and quantum
(Tsirelson) limits?

> The main findings in this work have appeared in: A. Te'eni, B. Y. Peled, E. Cohen and A. Carmi, "Multiplicative Bell inequalities," in Physical Review A, vol. 99, no. 4, p. 040102, 2019 (as a Rapid Communication).

Alice \& Bob - the CHSH game

Quantum entanglement enables Alice \& Bob to win the game more often than any classical strategy

Bell-CHSH parameter

The chances of winning the game are represented by the Bell-CHSH parameter:

$$
\begin{gathered}
\mathfrak{B}_{\text {CHSH }}=\left|c_{12}+c_{21}+c_{11}-c_{22}\right| \\
\operatorname{Pr}(\text { win })= \\
\max \mathfrak{B}_{\text {CHSH }} \leq\left\{\begin{array}{cc}
2 & \begin{array}{cc}
\text { local realism } \\
\text { (Bell limit) }
\end{array} \\
2 \sqrt{2} & \begin{array}{c}
\text { Quantum } \\
\text { (Tsirelson limit) }
\end{array}
\end{array}\right.
\end{gathered}
$$

Correlation: $c_{i j}=E[A \cdot B \mid i, j]$

$$
A, B-\text { random variables }
$$

$$
2<\mathfrak{B}_{C H S H} \leq 2 \sqrt{2}
$$

Needs quantum entanglement

Tsirelson's bound and the quantum correlation matrix

- Theorem: The second moment matrix for the vector of operators is positive semi-definite (A. Carmi and E. Cohen, "Relativistic independence bounds nonlocality," Science advances, 2019):
$\left[\begin{array}{c}B_{j} \\ A_{1} \\ \vdots \\ A_{2}\end{array}\right] \forall j \in\{1, \ldots, n\}$

From Schur's Complement:

$$
\underbrace{\left[\begin{array}{ccc}
\left\langle A_{1} A_{1}\right\rangle & \cdots & \left\langle A_{1} A_{n}\right\rangle \\
\vdots & \ddots & \vdots \\
\left\langle A_{n} A_{1}\right\rangle & \cdots & \left\langle A_{n} A_{n}\right\rangle
\end{array}\right]}_{R_{A}} \succcurlyeq \underbrace{\left[\begin{array}{cc}
\left\langle A_{1} \otimes B_{j}\right\rangle \\
\vdots \\
\left\langle A_{n} \otimes B_{j}\right\rangle
\end{array}\right]}_{\vec{c}_{j}}\langle\langle\underbrace{\left\langle B_{j}\right\rangle^{-1}}_{\vec{c}_{j}^{T}} \underbrace{\left[\left\langle A_{1} \otimes B_{j}\right\rangle\right.} \begin{array}{cc}
\cdots & \left\langle A_{n} \otimes B_{j}\right\rangle
\end{array}]
$$

Tsirelson's bound and the quantum correlation matrix (cont'd)

- Bell-CHSH Tsirelson's bound follows from PSD of the second moment matrix - specifically, from $R_{A} \geqslant \vec{c}_{j} \vec{c}_{j}^{T}$
- On both sides, take the quadratic forms with vectors $\left[\begin{array}{ll}1 & \pm 1\end{array}\right]^{T}$:

$$
\left[\begin{array}{ll}
1 & \pm 1
\end{array}\right] R_{A}\left[\begin{array}{c}
1 \\
\pm 1
\end{array}\right] \geq\left[\begin{array}{ll}
1 & \pm 1] \left.\vec{c}_{j} \vec{c}_{j}^{T}\left[\begin{array}{c}
1 \\
\pm 1
\end{array}\right] \Rightarrow \sqrt{2 \pm\left\langle\left\{A_{1}, A_{2}\right\}\right\rangle} \geq\left|c_{1 j} \pm c_{2 j}\right| .|c| c \right\rvert\,
\end{array}\right.
$$

- Substitue $j=1$ for $+\operatorname{sign}$ and $j=2$ for - sign, add the two inequalities and use the triangle inequality:

$$
\begin{gathered}
\mathfrak{B}_{\text {CHSH }}= \\
\left|c_{11}+c_{21}+c_{12}-c_{22}\right| \leq\left|c_{11}+c_{21}\right|+\left|c_{12}-c_{22}\right| \leq \sqrt{2+\left\langle\left\{A_{1}, A_{2}\right\}\right\rangle}+\sqrt{2-\left\langle\left\{A_{1}, A_{2}\right\}\right\rangle} \leq 2 \sqrt{2}
\end{gathered}
$$

- What if instead of adding, you multiply?

$$
\underbrace{\left|c_{11}+c_{21}\right|\left|c_{12}-c_{22}\right|}_{\text {multiplicative Bell parameter }} \leq \sqrt{4-\left\langle\left\{A_{1}, A_{2}\right\}\right\rangle^{2}} \leq \underbrace{2}_{\text {Tsirelson bound }}
$$

Alice \& Bob - "multiplicative" 2-device game

Multiplicative 2-device Bell parameter

The expected area, $E\left[A_{F}\right]$, for the droid, is proportional
to the multiplicative 2-device Bell parameter:

$$
\mathfrak{B}_{2}=\left|\left(c_{12}+c_{22}\right)\left(c_{11}-c_{21}\right)\right|
$$

Reminder:
Correlation: $c_{i j}=E[A \cdot B \mid i, j]$
A, B - random variables

$$
\mathfrak{B}_{\text {CHSH }}=\left|c_{12}+c_{22}+c_{11}-c_{21}\right|
$$

Theorem:

$$
\max \mathfrak{B}_{2} \leq\left\{\begin{array}{cc}
1 & \text { Bell limit } \\
2 & \text { Tsirelson limit }
\end{array}\right.
$$

\square

$$
1<\mathfrak{B}_{2} \leq 2
$$

Needs quantum entanglement

Multiplicative n -device Bell parameter

We based our parameter on the orthogonal vectors:

$$
\mathfrak{B}_{n} \triangleq \prod_{j=1}^{n}\left|\vec{v}_{j} \cdot \vec{c}_{j}\right|
$$

$$
\vec{c}_{j} \triangleq\left[\begin{array}{c}
c_{1 j} \\
\vdots \\
c_{n j}
\end{array}\right]
$$

\[

\]

$\mathfrak{B}_{n}=\left|c_{1 n}+\cdots+c_{n n}\right| \prod_{j=1}^{n-1}\left|c_{1 j}+\cdots+c_{j j}-j c_{j+1, j}\right|$

| $\vec{v}_{j=2}$ | | | |
| :---: | :---: | :---: | :---: | :---: |
| $\left[\begin{array}{c\|c\|ccc}1 & 1 & \cdots & 1 & 1 \\ -1 & 1 & \cdots & 1 & 1 \\ -2 & \ddots & \vdots & 1 \\ & & \ddots & 1 & \vdots \\ & & & -(n-1) & 1\end{array}\right]$ | | | |

Correlation: $c_{i j}=E[A \cdot B \mid i, j]$
A, B - random variables

$$
\begin{aligned}
& n=2: \\
& \mathfrak{B}_{2}=\left|\left(c_{12}+c_{22}\right)\left(c_{11}-c_{21}\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
& n=3: \\
& \mathfrak{B}_{3}=\left|\left(c_{13}+c_{23}+c_{33}\right)\left(c_{11}-c_{21}\right)\left(c_{12}+c_{22}-2 c_{32}\right)\right|
\end{aligned}
$$

Simulation for $n=2,3$

Orange - local correlations
Blue - nonlocal correlations

Tsirelson bound

Theorem:

$$
\mathfrak{B}_{n} \leq n!
$$

n ! is the Tsirelson bound

Tsirelson bound - proof (1)

First part - proof that $\mathfrak{B}_{n} \leq n!$

$$
\left[\begin{array}{c|cccc}
1 & \cdots & 1 & \cdots & 1 \\
1 & \cdots & 1 & 1 \\
-2 & \ddots & \vdots & 1 \\
& \ddots & 1 & \vdots \\
& & -(n-1) & 1
\end{array}\right]
$$

Outline:

1. Eigenvectors' norms' product is n !

$$
\left\|\vec{v}_{n}\right\|^{2} \prod_{k=1}^{n-1}\left\|\vec{v}_{k}\right\|^{2}=n \prod_{k=1}^{n-1}\left(k+k^{2}\right)=(n!)^{2}
$$

$$
\mathfrak{B}_{n} \triangleq \prod_{j=1}^{n}\left|\vec{v}_{j} \cdot \vec{c}_{j}\right|
$$

2. From PSD of the covariance matrix:

$$
\forall j \in\{1,2, \ldots, n\}, \vec{v}_{j}^{T} \vec{c}_{j} \vec{c}_{j}^{T} \vec{v}_{j} \leq \vec{v}_{j}^{T} R_{A} \vec{v}_{j}
$$

3. AM-GM inequality:

$$
\prod_{j=1}^{n} \hat{v}_{j}^{T} R_{A} \hat{v}_{j} \leq(\underbrace{\frac{1}{n} \underbrace{n}_{j=1} \hat{v}_{j}^{T} R_{A} \hat{v}_{j}}_{=n})^{n}=1
$$

Tsirelson bound - proof (2)

Second part - proof that $\mathfrak{B}_{n}=n!$ can be reached with QM
Suppose Alice and Bob share the two-qubit state $|\psi\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}$

- Alice can saturate the inequality:

$$
\prod_{j=1}^{n} \hat{v}_{j}^{T} R_{A} \hat{v}_{j} \leq 1
$$

- Her measurement operators $A_{i}=\hat{a}_{i} \cdot \vec{\sigma}$:
- Choose \hat{a}_{1} arbitrarily
- For each $i \in\{2,3, \ldots, n\}$, choose \hat{a}_{i} which is orthogonal to the sum of all previously chosen vectors:

$$
\hat{a}_{i} \cdot \sum_{j=1}^{i-1} \hat{a}_{j}=0
$$

- Bob can saturate the inequalities:

$$
\forall j \in\{1,2, \ldots, n\}, \vec{v}_{j}^{T} \vec{c}_{j} \vec{c}_{j}^{T} \vec{v}_{j} \leq \vec{v}_{j}^{T} R_{A} \vec{v}_{j}
$$

- His measurement operators $B_{j}=\hat{b}_{j} \cdot \vec{\sigma}$:

$$
\circ \vec{b}_{j}=\left[\begin{array}{lll}
1 & & \\
& -1 & \\
& & 1
\end{array}\right]\left[\begin{array}{ccc}
\vdots & & \vdots \\
\hat{a}_{1} & \cdots & \hat{a}_{n} \\
\vdots & & \vdots
\end{array}\right]_{3 \times n} \vec{v}_{j}
$$

- And then normalize: $\hat{b}_{j}=\frac{\vec{b}_{j}}{\left\|\vec{b}_{j}\right\|}$

Reaching the quantum limit - example for $n=3$

1. Choose \hat{a}_{1} arbitrarily $A_{i}=\hat{a}_{i} \cdot \vec{\sigma}$

$$
\xrightarrow{\hat{a}_{1}=\hat{x}}
$$

2. For each $i \in\{2,3, \ldots, n\}$, choose \hat{a}_{i} :

$$
\begin{aligned}
& \hat{a}_{2} \cdot \hat{a}_{1}=0 \\
& \hat{a}_{2}=\hat{y} \\
& \square_{\hat{x}}
\end{aligned}
$$

Reaching the quantum limit - example for $n=3$

1. Construct \vec{b}_{j} by: $\quad B_{j}=\hat{b}_{j} \cdot \vec{\sigma}$

Demonstration for $j=2$:

$$
\begin{gathered}
\vec{b}_{2}=\Lambda\left[\begin{array}{ccc}
1 & 0 & -1 / \sqrt{2} \\
0 & 1 & 1 / \sqrt{2} \\
0 & 0 & 0
\end{array}\right] \underbrace{\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]}_{\vec{v}_{2}}=\left[\begin{array}{c}
1+\sqrt{2} \\
-1+\sqrt{2} \\
0
\end{array}\right] \\
\qquad \vec{b}_{2}
\end{gathered}
$$

Λ flips y component
2. Normalize \vec{b}_{j}

Bell limit - Bob's strategy is deterministic

- Assuming local hidden variables, $\operatorname{Pr}\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n}\right)$ exists
- Using linearity of expectations, we can write the Bell parameter as follows:

$$
\mathfrak{B}_{n}=\left|E\left[B_{n}\left(A_{1}+\cdots+A_{n}\right)\right]\right| \prod_{j=1}^{n-1}\left|E\left[B_{j}\left(A_{1}+\cdots+A_{j}-j A_{j+1}\right)\right]\right|
$$

- If Bob's strategy is deterministic $\left(\forall j, \operatorname{Pr}\left(B_{j}=1\right) \in\{0,1\}\right)$:

$$
\mathfrak{B}_{n}=\left|P_{n}(\vec{\mu})\right|, \mu_{i}=E\left[A_{i}\right]
$$

- Where $P_{n}(\vec{\mu})$ is the following function:
- Theorem: $P_{n}(\vec{\mu})$ is a harmonic function

$$
P_{n}(\vec{\mu})=\left(\sum_{i=1}^{n} \mu_{i}\right) \prod_{k=1}^{n-1}\left(\sum_{j=1}^{k} \mu_{j}-k \cdot \mu_{k+1}\right)
$$

16

$$
\nabla^{2} P_{n}(\vec{\mu})=0
$$

What happens when we increase n ?

- $\max P_{n}(\vec{\mu})$ is also hard to find
- We found a "fully-deterministic" strategy, which achieves a special case of $P_{n}(\vec{\mu})$, denoted by $F D_{n}$
- Thus we conclude that:

$$
F D_{n} \leq \max P_{n}(\vec{\mu}) \leq \text { Bell limit } \leq n!
$$

Theorem:

$$
\lim _{n \rightarrow \infty} \frac{F D_{n}}{n!}=\sqrt{\frac{\pi}{2 e}} \approx 0.76
$$

Which would imply that in the limit of infinitely many possible measurement devices, the Bell and Tsirelson bounds are proportional

Simulation \& numerical results

\mathbf{n}	$F D_{n}$	Tsirelson / quantum limit ($n!)$
$\mathbf{2}$	1	2
3	4	6
4	16	24
5	64	120
6	512	720
7	3072	5040
$\mathbf{8}$	27648	40320
9	248832	362880
10	2359296	3628800

Summary

- New class of Bell inequalities
- General expression for Tsirelson's bound for an arbitrary number of devices
- Lower bound for Bell (easy to compute) which is proportional to Tsirelson's bound for a large number of devices

19

Thank you for listening!

BEU'S SECOND THEOREM:
MISUNDERSTANDINGS OF BELL'S THEOREM HAPPEN 50 FAST THAT THEY VIOLATE LOCALITY.

