Title: Mutliplicative Bell inequalities
Speakers: Amit Teeni, Bar Peled
Series. Quantum Foundations

Date: September 04, 2019 - 3:30 PM
URL: http://pirsa.org/19090092

Abstract: Bell inequalities are important tools in contrasting classical and quantum behaviors. To date, most Bell inequalities are linear combinations
of statistical correlations between remote parties. Nevertheless, finding the classical and quantum mechanical (Tsirelson) bounds for a given Bell
inequality in a general scenario is a difficult task which rarely leads to closed-form solutions. Here we introduce a new class of Bell inequalities
based on products of correlators that alleviate these issues. Each such Bell inequality is associated with a non-cooperative coordination game. In the
simplest case, Alice and Bob, each& nbsp; having two random variables, attempt to maximize the area of a rectangle and the rectangled€™s area is
represented by a certain parameter. This parameter, which is a function of the correlations between their random variables, is shown to be a Bell
parameter, i.e. the achievable bound using only classical correlations is strictly smaller than the achievable bound using non-local quantum
correlations We continue by generalizing to the case in which Alice and Bob, each having now n random variables, wish to maximize a certain
volume in n-dimensional space. We term this parameter a multiplicative Bell parameter and prove its Tsirelson bound. Finally, we investigate the
case of local hidden variables and show that for any deterministic strategy of one of the players the Bell parameter is a harmonic function whose
maximum approaches the Tsirelson bound as the number of measurement devices increases. Some implications of these results are discussed.

Pirsa: 19090092 Page 1/20



* In existing Bell-type inequalities, the Bell
parameter is the sum of correlations between
measurements made by spacelike-separated

parties

* We present a new class of Bell inequalities,

which are based on a product of correlations

* What are the classical (Bell) and quantum

(TSIFE|SOI’]) limits? The main findings in this work have appeared in:

A. Te'eni, B. Y. Peled, E. Cohen and A. Carmi, “Multiplicative Bell
inequalities,” in Physical Review A, vol. 99, no. 4, p. 040102,
2019 (as a Rapid Communication).
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Alice & Bob —the CHSH game

Quantum entanglement enables Alice & Bob to win the game more

often than any classical strategy
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Winning criterion:
Al¢ijO?"£:j:2
A; = Bj else
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The chances of winning the game are represented by

Bell-CHSH parameter

the Bell-CHSH parameter:

Beusy = |c12 + €21 + ¢4 — €22

Pr(win) =

max %CHSH < <
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local realism
(Bell limit)

/2 Quantum
(T'sirelson limit)

2

Correlation: ¢;; = E[A - B|i,j]

A,B — random variables

Needs quantum entanglement
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Tsirelson’s bound and the quantum correlation matrix

"B
* Theorem: The second moment matrix for the vector of operators is AI
positive semi-definite (A. Carmi and E. Cohen, “Relativistic independence Llvje{l,..,
bounds nonlocality,” Science advances, 2019): :
A,
(83) [4.©8) (4, ® B)
(41 ®B;)| [(A144) (A | 5 o
A, @ B; (A, A) (A, A,)
From Schur’s Complement: ( - ’) L A
(d) - aad] [@®B)
IR (A [ ®5) -+ (1 ®8)]
n4t n‘in A B;
R 1 ( ® ) Y
Y h A
R, C:

J
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Tsirelson’s bound and the quantum correlation matrix (cont’d)

* Bell-CHSH Tsirelson’s bound follows from PSD of the second moment matrix — specifically,

from R, > ¢;c/

* On both sides, take the quadratic forms with vectors [1  +1]7 :

1

[ 1R,

|20 +1gd [ ]= V22 AN 2 ey 0y

[ 1

+1

* Substitue j = 1 for + sign and j = 2 for — sign, add the two inequalities and use the
triangle inequality:

Beusy =

lc11 + €1 + €13 — Copl S ey + coql + ey —pp] < \/2 + ({4, 4,}) +\/2 —({A;, A} < 2V2

* What if instead of adding, you multiply?

lc11 + c21lle1z = cp2| < \/4 —({A, A2 <2
LI,J
Tsirelson bound

New multiplicative Bell parameter

6

Pirsa: 19090092 Page 6/20



Alice & Bob — “multiplicative” 2-device game

The droid’s step:

:::::::::::::::::::::::::::::::::::::::::::::::::

............................

. Objective:
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Multiplicative 2-device Bell parameter

The expected area, E[A], for the droid, is proportional

to the multiplicative 2-device Bell parameter:

%2 — |(C12 + 622)(C11 - C2])| Correlation: Cij = E[A J Bll,]]

A, B — random variables

Reminder:

Bensy = €12 + o0 + 011 — €4

Theorem: 1<B, <2

B. < 1 Bell limit
MAXS2 =19 Tsirelson limit Needs quantum entanglement
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Multiplicative n-device Bell parameter

We based our parameter on the orthogonal vectors:

j" n
B, £ ‘ “VJ CJ| | g
j=1 ;._

113
—
o 0
. —.

-

Uiz
1 [ 1 1 17
111 . 1 1
-2 " : 1

" 1 E

-(n—-1) 1]

Correlation: ¢;; = E[A - B|i, ]

A, B — random variables

n-1

B, = lcin + -+ l_[|C1j + o+ Gjj _jCj+1,j|
j=1

n=2: n=3:

B, = |(c12 + c2)(c11 — €21)] Bz = [(c13 + €23 + c33)(€11 — €21) (€12 + €22 — 2¢3;)]

9
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Simulation forn = 2,3

Orange — local correlations

Blue — nonlocal correlations
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Tsirelson bound

Theorem:

n! is the Tsirelson bound
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Tsirelson bound — proof (1) P
-2 - : 1

First part — proof that B,, < n! 1
—-(n-—-1) 1

Outline:

1. Eigenvectors’ norms’ product is n!

n-1 % . “ |% ﬂ|
1,117 ﬂuvknz =n| [+ = w2 S U
k=1 J=
2. From PSD of the covariance matrix:
vje{1,2,..,n}, ﬁ,’-"'@-cﬁ"ﬁ, < ﬁ}"RAﬁj
" <A1A1) (A1An)
3. AM-GM inequality: n 1 : :
_Z 0T Ry, | = Jtnany a0
n
j:l : Y

12 w:_/ RA
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Tsirelson bound — proof (2)

Second part — proof that 3B,, = n! can be reached with QM

Suppose Alice and Bob share the two-qubit state ) =

* Alice can saturate the inequality:
n

AT o~
‘ ‘ U]- RA 171 < 1

J=1 A 3
* Her measurement operators A; = a; : 0:

o Choose @, arbitrarily

o Foreachi € {2,3, ...,n}, choose @;
which is orthogonal to the sum of all
previously chosen vectors:

i—1
fii * Z (’ij - 0
j=1
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|00)+]11)
V2

Bob can saturate the inequalities:

. 2T 2 2T - =T —
vji€e{1,2,..,n}, Vi CiCj V; S Vj Ry

His measurement operators 5; = bj ol

1 : :
11L: :

- b
o And then normalize: b; = —L
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Reaching the quantum limit —example forn = 3

1. Choose @, arbitrarily A, =@&; -6
a] — f
S
2. Foreachi € {2,3, ...,n}, choose a;:
a,-a, =0 az-(@, +a;)=0
a; =7 . 94z
F (/E - -}} 'Jk L /'
; T ’Iff /‘ A~
V2 .
> y
—— /
3 > N
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Reaching the quantum limit —example forn = 3

1. Construct Ej by: B; = 5]- )

Demonstration for j = 2: B 1 0 1/A2]11 1++/2
b, = A 0 1 ']/./\:"z [ 1‘= —1+4+42
00 o 5z 0
U2

A flips y component
2. Normalize b;
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Bell limit — Bob’s strategy is deterministic

L ]

Assuming local hidden variables, Pr(A44, ..., A,,, B4, ..., B,,) exists

L]

Using linearity of expectations, we can write the Bell parameter as follows:

n-1

%n = |E[]))n.(/]1 + -+ An)]l 1—I|E[Hj(/ll + -+ Aj _j/]j+1)]|
j=1

If Bob’s strategy is deterministic (¥}, Pr(b’j = 1) € {0,1}):

B, = [P (DI, ui = E[A]

T 1—-1

k
P (i) = ( lui) Zﬂj — k- #k+1)
» Theorem: P, (ji) is a harmonic function =1/ k=1 \j=1

16 Van(ﬁ) =0

—
—

L]

Where P, (i) is the following function:
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What happens when we increase n?

* max P, (@) is also hard to find

« We found a “fully-deterministic" strategy, which achieves a special case of P, (i),
denoted by FD,,

* Thus we conclude that:

FD,, < max P,() < Bell limit < n!

- FD, T
lim = |—=0.76
n-oo n! 2e

Which would imply that in the limit of infinitely many possible measurement
devices, the Bell and Tsirelson bounds are proportional

Theorem:
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Simulation & numerical results

0.75 T T JEEN USSR v Tsirelson /
i e FD, | quantum
0.7} ‘MN jV limit n'
|
- 0.65 ’ n 16 24
o6l 5] 64 120
' B s 720
3072 5040
0.551 N 27648 40320
BEN 248832 362880
0.5 ' | ! ' ' B0 2359296 3628800
0 50 100 150 200 250

n
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Summary

* New class of Bell inequalities

* General expression for Tsirelson’s bound for an
arbitrary number of devices

* Lower bound for Bell (easy to compute) which is
proportional to Tsirelson’s bound for a large number
of devices
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Thank you for listening!

t = O NANDSECONDS

t= 1 NANOSECOND

THIS 15 CALLED o
BELLS THEOREM iy

.

v

BELLS SECOND THEOREM:
MISUNDERSTANDINGS OF BELLs THEOREM
HAPPEN S0 FAST THAT THEY VIOLATE LOCALITY,
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