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Motivations

GR is mostly likely an effective field theory describing collective
low energy excitations of some unknown to us microscopic DOF.

How can we say anything about the mysterious UV in the absence
of any hints from experimental or observational data?

It may be that we will have no further hints apart from the structure
of all known to us particles and interactions.

So it may be sensible to try to take this structure seriously and see
where it can lead. This talk is an attempt in this direction.

| will present a suggestive rewriting of the SM free fermionic
Lagrangian and make some speculations as to what can be next
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Suggestive analogy
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dx dy dz
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Fig. 5. maxwell's equations In his original notation in “A dynamical theory of the
electromagnetic field.” The modern and original variables correspond as follows: E - (P Q. R):

D (FLg. 0 MW (o ) B il

i Ip.qFlp

- @; ¥ is the electric potential;

(F, G, H) is the magnetic potential, Note that the original set of equations includes
Ohm's law. the Lorentz farce. and the continuitv eauation for eharge,

dF =0
d*F =0
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This talk

| will describe representation theory that leads to the realisation
that all spinor fields of one generation of the SM arise as
components of a single real Weyl (Majorana) irreducible
representation of a group whose complexification is Spin(14,C)

| will describe an elegant way to obtain the correct kinetic terms
for all the spinor fields (or free fermion Lagrangian) using
dimensional reduction from 14D to 4D

| will describe the beautiful geometry of spinors in 14D that is
potentially related to the issue of symmetry breaking required to go
from Spin(14) to Lorentz times the SM gauge group
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| want to start by explaining you the construction of spinor
representations of the orthogonal groups that in particular leads
to the following important statement

A Weyl spinor representation of SO(2n), when restricted to
| SO(2k) x SO(2(n-k)) embedded into SO(2n) in the standard way,
will split as a Weyl spinor of both SO(2k) and SO(2(n-k)), plus another
. Weyl spinor of both SO(2k) and SO(2(n-k)), of opposite chiralities

——

The construction | will explain is standard in the maths literature,
but very few physicists know it.

It turns out that spinors are differential forms in disguise!
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Spinor representations of orthogonal groups

Spinors of SO(n,n) admit a beautiful explicit description in
terms of differential forms. Complexifying, everything works
also for arbitrary signature.

Clifford algebra in n+n dimensions can be realised by
operators acting on differential forms in n dimensions

(a1 = da Ai 1= 19 )0z

They satisfy the following anti-commutation relations

L o Gives split
((_LL_) | (.I,j —+- O',fj (G,l)l = (’);l W signatgre
metric
All others anti-commute This gives a realisation of Cliff(n,n)

Weyl representations are those in fixed parity
(even or odd) differential forms

Page 9/50



Pirsa: 19090073 Page 10/50




Pirsa: 19090073

Spinor representations of orthogonal groups

Spinors of SO(n,n) admit a beautiful explicit description in
terms of differential forms. Complexifying, everything works
also for arbitrary signature.

Clifford algebra in n+n dimensions can be realised by
operators acting on differential forms in n dimensions

(a1 = da Ai 1= 19 )0z

They satisfy the following anti-commutation relations

L o Gives split
((_LL_) | (.I,j —+- O',fj (G,l)l = (’);l W signatgre
metric
All others anti-commute This gives a realisation of Cliff(n,n)

Weyl representations are those in fixed parity
(even or odd) differential forms

Page 11/50



Lie algebra of Spin(n,n)
1_

Most general quadratic operators constructed from a;, a,

Concretely, let T :=R"

Consider matrices of block form

M = ( ; “I____lf,- ) . AcEnd(T),peTT, BeT"QT"

With matrices B, 3 anti-symmetric

spin(n,n) = so(n) ¢ so(n) ® gl(n)
The action of Lie algebra element M on a differential form ¢

- |
o(MYp=BAp—igp— AT+ STI‘(A_M).
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Example of SO(2,2)
(e, (D)7, a1, ay

S0O(2,2) Lie algebra is realised by all quadratic operators

Get two commuting copies of SL(2) Lie algebra

H=a 1(‘11 — (.IQ(ZLL, E=a (_'.'_.:_2, JO— (‘1.2('1.1i.

E.,F_|=H, |H,E.] = +2F,.

H = (1..|a.T + a,gu,.:[_; — 1 =a al — (1,..1_;(1..3, F. = ajas, F_ = (J,.T)(I,T.
1 2 1 2 + 21

By E_|=H, |H Ey =+2E,.

The action on odd forms

. 9 3 9 ) . )
Hdx® = (a l”-'jl — (1.;_3(1.L)d;1:'“ = dx*, Hdx' = ((iz_.l(z_.J[ — (I-;g(i';)(li.ﬁlﬁ-'l = —da',
E_dx® = (z.gn,}rd:r' = —dux!, b dx! = (1‘1(1.13(1.:171 = —dx
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The action on even forms

H1 = (rtlf'ljl- — U,Z('J.g) 1 =1, Hdr'dz? = (.('1,1(111- — (I,.._];('Lg)({;rlr'l;!.fz = —(I;I.'l('i:l:g?

EF_1= (L.E(LJ{ 1 = —dz! dx?, E+d;1:ldl.¢’fg — aasdx'de® = —1.

Overall, get SO(2,2) = SL(2) x SL(2)

Weyl spinors transforming non-trivially with respect to the
first SL(2) are odd forms, and non-trivially with respect to the
second SL(2) are even forms

( ;; ) = —a + fdx'da? ( Z; ) = —ada® + pBdxt.

Two types of 2-component spinors of SO(2,2)
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Decomposition under Spin(2k) x Spin(2(n — k)) C Spin(2n)

We realise a Weyl representation of Spin(2n) as e.g. even degree
differential forms in n dimensions. We then split coordinates

n=mn-=k)+k

We have

A(:rrm«n(Rn) — A(_n‘.frl(Rn_k) X Am‘id(Rk) D Af’_’.t.‘(f'n.-(R”_k) & A(:run«n.(Rk)

Weyl spinor with respect to Wey! spinor of opposite

both Spin(2(n-k)) and Spin(2k) chirality (with respect to
both groups)

This proves the decomposition rule
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Dirac operator

To describe Dirac operator in R™"
will describe spinors as differential forms in R"
with coefficient functions depending on both z*, 7;

The Dirac operator is

o0 .0
Dy = c(dx®) ﬁg/’ + c(dx;) 0(—}, P

where c is Clifford multiplication
Explicitly c(dx') = dx' = (a")'

((d;I ) . [d JOxt — U

Dirac operator as a version of the exterior derivative operator
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Dirac operator in R?*?
ds® = da'diy + dxidis Off-diagonal form of the metric
rh? = ul? 4+ ah?, Tro=ub?—al?
ds* = (du')? + (du*)? — (du')? — (du?)? Diagonal form of the metric
Two chiral Dirac operators 'S = Sy, 0:5. =8

o A o7 ( d/ou? — a0’ —f‘)/i)u_.'+r’)/(‘)-i}_') ‘)( /07 —5)/5).-5-|)
A = C - —

—d/ou’ —/9u"  —0/ou? — d/0u? S\ —0/0t —0)oa*

Coa [ 0)ou+ 00w —ofou + 00w\ . [ 0joxt 00
(-).-'l’ = () — _,, P ‘ ‘ "~
d/0x /0y

djou' —o/out  —9/ou* + d/ou*
. TN N - | 0 o O 0!
More compact notation 0" = 3( —9, -0y ) 9= ‘3( —0, 2 )

s 9 )] / S = C A2 31 2
o @) o ()._)n (_)wi,))’ P L ()‘ ! (). o]
3 Do — 0°f &) —Oav — O3
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Dirac operator as exterior derivative

D(—adx® + Bdax!)

(—Oha — 0o 3)dxt da? — (f‘)grr —I'A).

O adr dr? + Oy Bdatdat — O*adiyda® 4 ("}l/}r[.f'lfi.'(']

Same result more compactly

,. ) . _ o\ Lo [ @

Same computation for the other chirality

D(—a + Bda'dx?) = =0 adx’ — Ovada® + ' Bdiydat da? + 9% Bdiyda’ da®

— — (v — ' P)da? + (=0 — I*B)dxt

More compactly
D (( —1 dr'dr? ) ( ”f )) = ( —dr? dr! ) 2(_)( :; )

Do reproduce the correct Dirac operators!
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Standard Model and GUT

The structure of the SM is most transparent in the 2-component
spinor formalism

2-component spinors are of two types

_',
XA XA . .
Both are irreducible
representations of
Lorentz
unprimed primed "
(undotted) (dotted) Complex (Hermitian)
. . conjugates of each other
spinor spinor
Weyl Lagrangian
i utNA 9 AL s ta Real (Hermitian)
L = L (\ ) ()A’ XA =1X 0\ modulo a surface term
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Fermions of the SM

Two-component

fermion fields SU(3) SU(2), Y Ty Q="Ty+Y
1, Lriplet ' 3 #
[§] 2 }
Q, doublet
ol triplet % —l, —l]
' anti-triplet singlet “; 0 “;
dt anti-triplet singlet I; 0 I{
7 singlet —% 1 0
L, = doublet, - -
f, singlet L L I
" singlet singlet | 0 |

All fields are 2-component spinors, transforming under SU(3) x SU(2) x U(1) as indicated

The generation indices i=1,2,3 Colour indices suppressed

Bar over a symbol is a part of the name, not to be confused with complex conjugation
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SM Lagrangian
We describe it in words instead of writing a long expression

Every of the 2-component spinors in the table will have its Weyl
kinetic term. Spinors are coupled to the SU(3) x SU(2) x U(1)
gauge fields, and the Higgs field, which is a complex valued SU(2)
doublet, of hypercharge Y=1/2. All terms of mass dimension four
that are compatible with the gauge and Lorentz symmetry are
written down, together with their Hermitian conjugates.

Plus there are kinetic terms for the gauge fields - usual FA2

Plus there is the kinetic plus potential term for the Higgs.
Potential is quartic and makes Higgs acquire a non-trivial VEV.

Right-handed sterile neutrinos r; can be added for free

If add Majorana mass terms for them, gets see-saw mechanism
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SO(10) structure of SM fermions

To see all fermions of a single generation inside a single
irreducible representation of SO(10) need to think of leptons as
the fourth colour of quarks

lepton
v o u

Then have SU(4) mixing the four colours of quarks

red green blue lepton
U Uu Uu u
d d d d
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Also need to introduce a new gauge symmetry - SU(2) g
with respect to which the barred spinors form doublets

u,d — ( 7 ) 1/,1—%( i )

These spinors are also arranged as those of different SU(4) colour

_ red - green _ blue _ lepton
U U u u
d d d d

Overall, we have fields transforming under Pati-Salam group

SU(2)L x SU(2)r x SU(4)

in the following representations

=(3) wro a=(3) aas

Pirsa: 19090073 Page 23/50



Pirsa: 19090073

One then notes SU(2) x SU(2)/Zs = SO(4)

SU(~1)/ZB = SO(G) Cartan’s isomorphisms

And SO(4) x SO(6) C SO(10)

This shows that all spinors of a single generation of SM arise as
components of a single Weyl spinor of SO(10), with Pati-Salam
group embedded into SO(10) in the standard way

SU(2)7, x SU(2)r x SU(4) ~ SO(4) x SO(6) C SO(10)

2-component spinors of single generation are components of
16¢ irreducible Weyl representation of SO(10)
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Back to the main story:

In the description of SO(10) GUT Lorentz spinor indices played no
role. The GUT fermion is an object

L\ / .
! aA plus complex conjugate

v V\
/ SO(1,3) 2-component

30(1 0) Spinor index Spinor index

Qf:l.,...al(i ‘4:1a2

Overall, single generation of fermions is described by 16 x 2
complex functions or

64 real valued functions
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Can “unify” the Lorentz and GUT spinor indices by repeating
SO(2k) x SO(2(n — k)) € SO(2n)

Should put the Lorentz SO(1,3) and GUT SO(10) groups together

Some real form of
SO(4,C) x SO(10,C) ¢ SO(14,C)

Weyl spinor of SO(14,C) is 64 dimensional (complex), and splits
2c ® 16¢ + 2¢ ® 16¢

into a sum of two Weyl representations of opposite chiralities

This is as we want, should just select an appropriate real form
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SO(14, C) real form

Standard representation theory of Clifford algebras shows
that there are only two real forms that give a real 64-
dimensional Weyl representation

Have SO(s,r7)  s+7r =14
To have Weyl representation beingrealneed s —r =0 mod 8

The two possibilities are
SO(7,7)  s—r=0
SO(11, 3) s—1r =328

Both contain Lorentz SO(1,3) and Pati-Salam groups as subgroups

SO(1,3) x SO(6,4) € SO(7,7)

This talk is an advertisement

SO(L 3) X 80(10) C 80(1113) of the first option
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Dimensional reduction: Weyl Lagrangian in R™"

Weyl Lagrangian exists only for SO(n,n) with n odd
SO(n,n) invariant inner product

(lIfh \112) — 0'(\111)\112

/!

canonical involution
VM XR...00 =2V X...XKV

restriction to top form

S[w] = /R(xp%)%

Together always give an
Vanishes by integration by even form, but D
parts for n=1 mod 4 changes degree by one.
So n must be odd
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Dimensional reduction: Weyl Lagrangian in R™"
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So, there is a non-trivial Weyl Lagrangian only for SO(4k-1,4k-1)
k=1,...

It is an exercise to check that dimensional reduction from 2n to
2k dimensions produces the correct Weyl Lagrangians in 2k
dimensions. The signature in R?* can be any desired one.

E.g. Weyl Lagrangian exists for SO(3,3) | ‘
A(-?.-z.r(-,‘.'n.(Rs) — A[) © Az

Dimensional reduction to 3+1 gives 4 real dimensional = 2
complex dimensional

SO(3,1) x SO(2) € SO(3,3)
single electrically charged Weyl fermion in 3+1
Because we decided to reduce to 3+1 where spinors are

complex-valued, the two Weyl spinors of opposite chirality are
just a 2-component spinor and its complex conjugate
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The next non-trivial case is for SO(7,7)
Dimensional reduction to 3+1 gives
SO(3,1) x SO(4) x SO(6) C SO(7,7)

the fermion content is that of the Pati-Salam version of the SM

Summary so far: We have re-written the SM fermion kinetic terms
as dimensional reduction of

[/ \1}@\1} J
- JR14 |

Also explained the SM spinor content - The only simpler option
is SO(3,3), which is too simple. But of course do not understand
why need to reduce to 4D, and do not understand why need to
break the symmetry further to that of the SM gauge group
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| will now explain some further geometric (group theory) facts
that select SO(7,7) as the group with certain unique properties

It is possible that this can lead to understanding of why need to
reduce to 4D and why the SM gauge group arises

The idea is to assume that there is some mechanism that gives
all of the SM spinor fields (or rather their bilinears) some non-
zero expectation value. So that the quantum spinor fields that
appear in the SM Lagrangian are perturbations around a non-
trivial classical (spinor) background.

So, assume that there is a non-trivial Weyl spinor of SO(7,7)

A non-zero spinor generally breaks the Spin group to some
stabiliser subgroup, and it is interesting to study these
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Representation theory Fact #1

Consider the action of SO(2n) on its Weyl spinor representation

), ‘ '2, -
diln(SO(an.)) — Zn.( g 1) Dimension of the group

diIIl( Wy, ,) — on—| Dimension of the Weyl representation

The dimension of the spinor representation grows with n much
faster than dimension of the group

While for small n we have
The last n when

dim(SO(2n)) > dim(Ws,,) this is true is n=7
. ' giving SO(14)

This will not be true for sufficiently large n
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Indeed, for n=7 For n=8

pR— . .
dim(SO(14)) =91 | dim(SO(16)) = 120
i dim(Wy,) = 64 j dim (W) = 128
Last dimension when
dim(SO(2n)) > dim(Ws,) Why is this interesting”?

When dimension of the group is bigger than dimension of the
space it acts on, generically, there is a non-trivial subgroup
stabilising a point - symmetry breaking

This is very interesting for SO(7,7)!
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Symmetry braking for SO(3,3)

Consider the action of so(3,3) on its Weyl spinor '
representation, now realised as odd degree forms in R”

General such formis ¢ = ¢ + o3
c(M)p=BN¢p —igps+ (5 Tr(A) — A") (o1 + ¢3)

Clear that can kill the ¢ part using 3 € so(3)
The canonical form of the Weyl spinor of SO(3,3) ¢ = ¢3

Not surprising, because SO(3,3) ~ SL(4,R) 8
Every spinor of SL(4) can be put into the form . 0
Stabiliser sl(3) & so(3) 1 x % 0
. . . g e SL(4,R)
Not particularly interesting 0 * x
0 % x
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Symmetry breaking for SO(7,7)

The dimension of the generic orbit for SO(7,7) acting in its Weyl
representation is 63 - the “scale” of the spinor can not be changed

dim(SO(7,7)) — dim(orbit) = 91 — 63 = 28

This suggests that the stabiliser is related to G2  dim(Gsz) = 14

(could also be SO(8) but this is not what happens)

There are three possible generic orbits, with stabilisers being

G2 X Gg Compact real form
Cases 1,1’ , ’
10 X o Split real form
. C
Case 2 GQ
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Symmetry breaking for SO(7,7) - general case
Now general odd form ¢ = ¢1 + @3 + @5 + @7
Dimensions 2 35 o1 1
Action of so(7,7)

= 64

1-forms

c(M)p = —igps

+B A @1 —igps ~ @ 3-forms
G
P M—

+B A ¢3 — 'i;—gg’b',— 5-forms
+B A d)s_') 7-forms
1 -
+(=Tr(A) — Ao
_ 2 Selects a
Can use (3 tokill ¢s part special
direction!

Generic form can always be put into th

4
¢ = Q1+ P3 + o7
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The appearance of SU(3)

i The subgroup of (75 arising at the stabiliser of ¢3 that fixes
- the special direction ¢ is precisely SU(3)!

Thus, the strong gauge group arises in this scheme naturally

It is also clear that appearance of the Lorentz SO(1,3) is related
to some mechanism that is to select 2 more of the remaining 6
directions as special. This mechanism may be dynamical
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Further special facts about SO(7,7) setup

(Generic 3-form in R’ defines a metric) of signature all plus or (3,4)

gc(§,myvole =icC' N iy CANC

This implies that generic Weyl spinor of SO(7,7) defines a metric in R

- Exceptionally, for a Weyl spinor of SO(7,7) Highly non-trivial
there is an invariant form of degree 8! e S“?"" for
- — pinor

One can then imagine that the Yukawa mass terms of the SM
are reproduced by linearising the degree 8 invariant around a
non-trivial spinor
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Representation theory summary

Generic fermion of the Standard Model breaks
SO(7,7) symmetry down to SU(3)

(times in general non-compact group of dimension 20)

Generic fermion of the Standard Model defines a
metric in seven dimensions

Extremely rare phenomenon when a spinor defines a metric

There is an SO(7,7) invariant interaction term that
can be added to the free fermion Lagrangian

Extremely rare phenomenon that “mass” term for Weyl possible
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Outlook
Non-zero SM fermion field defines a metric in seven dimensions

Could it be that gravity is an effective field theory
describing fluctuations of this metric? This would answer
the question of why metric is non-zero, and also why
gravity is a special force

Question that can guide further developments:

~ o 7/ Order 8 invariant (to some
S [lIl] T /ﬁ w(‘Il* D\IJ) + V (‘D) appropriate power)
. TR (i '

Is there a solution of this fReory that “spontaneously
compactifies” to 4D and bregks the symmetry to the SM
gauge group?

Such Lagrangian only exists in 747 dimensions!
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