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Introduction

® Unification no-go theorems. Spacetime symmetries (Poincaré group) and compact
internal symmetries (compact gauge group) cannot be unified in an easy way
(McGlinn1964. Coleman-Mandula1967).

® Supersymmetry (SUSY). The no-go theorems are circuimventable if some amount of
“exotic” symmetries are allowed (Haag—Lopuszanski—Sohnius197‘5).

$» SUSY is not seen experimentally. At present status (2019).

® Do mathematical alternatives exist? What are the most general (strongest) group
theoretical obstacles and can one bypass them?

® It seems, possibly yes. We found a group theoretical idea for a mechanism to possibly
substitute SUSY for symmetry unification.

(Will talk only in global symmetries limit, for brevity — making these local is not a problem.)

I
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[ Assume that we are looking for a model which has a classical field theory limit.
In 2 (classical) field theory we have finite degrees of freedom at points of 4d spacetime.

ticld contigurations

(at a spacetime point) hiekl conhigurations

(1n flat spacetime hiut)

(0%

e
———— flat spacetime

tangent space

ficlds configurations
(in Jocal neld theonies)

fichd values

fie 1 values
frehd salues

spacetime mamiold

Diffeo invariant Lagrangian is constrained by its first order symmetries at points of spacetime.

initely many, because they act on finite degrees of freedom.

Such symmetry generators aré f
if we looked at global symmetries limit.)

(They have the samé structure as |

ional real Lie algs/groups. (Not a big surprise.)

| sSuch symmetries form always finite dimensi
ture of Lie groups / algs seems a wise strategy.

So, looking at general struc
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General structure of finite dim real Lie groups / algs

—
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|
|

(Will talk only about connected & simply connected Lie groups for simplicity. +» Lie algebras.)

9 Killing form signature:
On any finite dim real Lie algebra one has the Killing form, an invariant scalar product.

Ty = Tr (ad, ad,,)

(1t appears e.g. in the Yang-Mills Lagrangians:

[ Doy 0 Il Killing form

It may be definite, indefinite, or even can be degenerate:
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® Levi decomposition theorem:

(simple) (simple)
E = R X Tl D
S ~ ~ \ —
finite dim real Lie group degenerate directions of Killing form non-dagenerate directions of Killing form
(radical. or solvable part) (Levi factor. or semisimple part)

(Modulo global topology.)
E.g.: the symmetries of flat plane (translations x rotations) is a typical example.

® Traditional gauge theory folklore: only (semi)simple groups aré important. SU(\) etc.

® Poincaré group:

(simple)
7 L
P = x
Poincare group translation group (radical) homogenaous Lorenlz group (Levi factor)

| is a typical demonstration of Levi's decomposition theorem.
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® Levi decomposition theorem:

(simple) (simple)
~ = ~ =
E = R x L RSN Ln
i v ~ M— e’
finite dim real Lie group degenerate directions of Killing form non-degenerate directions of Killing form
(radical, or solvable part) (Levi factor, or semisimple part)

(Modulo global topology.)
E.g.: the symmetries of flat plane (translations x rotations) is a typical example.

® Traditional gauge theory folklore: only (semi)simple groups aré important. SU(V) etc.

® Poincaré group:

(simple)
i /e
— bt
\3/ ~ Ly
Poincaré group translation group (radical) homogeneous Lorenlz group (Levi factor)

is a typical demonstration of Levi's decomposition theorem.
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o
® super-Poincaré group (SUSY):
G

P = S x
S~ S~ ~—
supertranslation group (radical) homogeneous Lorentz group (Levi factor)

super-Poincare group

is a similar example, with a bit larger radical (so called: two-step nilpotent).

Supertranslations: a transformation group on the vector bundle of superfields. Action:

e H.-\ o l_..—\

g :

el d® + ﬂix"fvi(g.-\;"l

on the ‘supercoordinates" and the affine spacetime coordinates.

o Febn o Adeeinat o rma ) a1 iyt o 8030
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Often, SUSY is presented as “super-Lie algebra™

‘/ [ R{ N F)b } = “.
v [P .Qa ] =0

[ ]
M {0y (@ H=0
I = { (?__‘; (:) 3/ } = ().
) = {Qa Qar } =205 4 Fa.

If not a Lie algebra, how canitbe a collection of infinitesimal transformations? Answer:

[Nucl.Phys.B76(1 974)477, Phys.Lett.B51(1 974)239]:

Take f‘(‘” (i=1,2) ‘supercoordinale" (Grassmann valued two-spinor) basis.

Introduce new generators Oiy = € E’}) Q 4 instead of Q1. (Infinitesimal change of superfields.)
— SUSY has also an ordinary finite dim real Lie algebra presentation.

Lie algebra: super-Poincaré Lie group is obtained. SUSY is not so exotic!

Exponentiating this
Lie algebra theory also applies! |

| Ordinary Lie group /

ey by ity v 480
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All possible extensions of the Poincaré group

!r"_' e
f
| O'Raifeartaigh theorem (1965) — all possible finite dim extensions of the Poincare group:

e Either:
((A) Trivial extension: ~Coleman—-Mandula.
( E = ( R >y XexDn (Other symmetries are independent from Poincare.)
P = il Sl (B) Extended radical: not (A), radical bigger than T
| (SUSY, extended SUSY, and our new example.)
e Or:
'(C) Poincaré embedded into simple Lie group.
E — R b i T a2 Lan

( /( (Conform — SO(2.4) — theories etc.
ﬁ Heavy symmelry breaking needed for a

gauge-rheory-like [imit. i.e. to point out spacetime.)

\
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Group theoretical constraints for any unification

'f

[
|

@ Collection of all symmetries:

\b;l‘ o R b Ll D X Ln
~ ~ b
Lie group degenerale directions of Killing form F n-degenerale directions of Kiling form
(cackcaliofeolas FeC) it (Levi factor, or semisimple part)
- o 3
'
4
,
s
r
’
e Poincare group: o
"
= s » /=
Poincare group translations (radical) homogeneous Lorentz group (Lawi factor)
e Compact gauge group. e
G - l.’(:l)x'--xl_"[])‘r x Gix - X Gom
, ~ - e o —

' ~ ¥ -abeli t factor)
i compact Lie group compact abelian part (radical) compact non-abakan par (Lol

s prales o Pl el sruna iy sl _ & 340
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How (extended) SUSY works Lie group theoretically?

® Unification via extended stper-Poincaré group:

(nonvanishing adjoint subgroup action)

l l l | ‘

‘i 3,4 - C) ) b ( (l X ]
s — - =0X ] A e x L
( ( -. ) oxt 1 Gm X C
Iranslations central cl E"ges pure .u‘llpel'tfanslahoﬁs com pacl internal Lorentz group

- — symmetries
group of supertranslations (radical)

B

exlended super-Poincare group

® The extended super-Poincaré group is direct-indecomposable (unified).
— Connects spacetime symmetries with compact internal (gauge) symmetries.
—. Connects potentially independent compact internal symmetries with each-other.
— Running of coupling factors do unify. >

;”%/

Runmng of gaupe ¢ouplings

® Operated by O’'Raifeartaigh theorem case B. Via the extension of the radical.

waﬂ-mn&nn!nmmﬂ ..... J orame by oty - v 1OVS0
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$ Symmetry breaking still needed. Because in (extended) SUSY, the non-Poincaré
symmetries couple too strongly to spacetime symmetries.

superfield configurations

matter field conhigurations
(i SUSY theories)

(in simple gauge theories)
S s
L5 - L
3 >
= -— L]
> = some
= all T = non-Poincané
O J non-P(‘:lnm.m W symmetries
= = s = ~—r (supertranslations)
— o S
— ——
- ) —
spacetime manifold

spacetime manifold

(Not a vector bundle automorphism
group over spacetime.)

Experimental hint not seen for this, so symmetry breaking needed for gauge-theory-like limit.

L (bug? feature?)

On the possible role of nilootent internal svmmetries in unification — o. 11/40
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A possible alternative mechanism to SUSY

® Conservative extensions of the Poincaré group.
The non-Poincaré symmetries are really all internal, i.e. do not act on spacetime.

& There exists P — E —» P homomorphisms, such that o o i = identity.
< Symm. breaking not needed for gauge-theory-like limit (vector bundle automorphism).

® The (extended) super-Poincaré is non-conservative extension of Poincaré group.

® All possible conservative extensions of the Poincaré group:

(nonvanishing adjoint subgroup action)

|. I | ]

( T X N ) X ( Gy x..xG,, X L )
translations  nilpotent internal symmetries compact internal symmetries  Lorentz group

v

all internal (gauge) symmelries

unified global symmetries of matter fields

O’Raifeartaigh theorem + energy non-negativity = these are only possible ones.
Similar gauge — spacetime symmetry unification to extended SUSY, via extended radical.

(notion: nilpotent &~ solvable, means that ad.. for all . is nilpotent)

On the possible role of nilootent internal svmmetries in unification — . 12/40
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® In a conservative Poincare extension, non-Poincaré symmetries are all internal.

any conservative extension of Poincaré group =

{all internal symmetries} x {Poincaré}

(SUSY does not admit this property.)

® Constructed an example:

See J.Phys.A50(2017)115401, with & = U(1).

tield values

matter field configurations

-
-

=

N\

A

N

\

\

\
|

all

| | non-Poincaré

_ /| symmetries
/1
S
/
rd

—

It is the symmetry group acting on a QF T-inspired algebra valued fields.

—_—

spacetime manifold

Price to pay: the full internal symmetry group is not purely {compact} but

{nilpotent} x {compact}

(Issue: nilpotent generators — corresp. gauge fields have zero YM kinetic Lagrangian!!)

On the possible role of nilootent internal symmetries in unification — 0. 13/40
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In a conservative Poincaré group extension: there exists a homomorphism of

N M | G1X%...xXG,n X P > G1%..XGm X P
S~~~ [ — S~~~ N, ~
nilpotent internal compact internal  Poincare symmetries compact internal  Poincare symmetries
symmetries symmetries symmetries
Ny
W W
unified group, acting on fundamental field degrees of freedom observed symmetlries, acting on some derived

field quantities which are function of
fundamental degrees of freedom

No immediate contradiction with experimental situation.
(Nilpotent internal symmetries can act "hidden" in some fundamental d.o.f.)

Distant analogy:

\\Y ——  Fierz bilinears of W
S— — w ’
U(1)xPoincaré acts onit only Poincaré acts on it

The Fierz bilinears forget the fundamental U(1) symmetry of Dirac bispinor fields.
.\ (But such "forgetting function" mechanism works also for semi-direct product.)

On the possible role of nilootent internal symmetries in unification — o. 14/40
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Perspectives

Least exotic solution to gauge—spacetime and gauge—gauge symmetry unification:
conservative unification pattern.

(nonvanishing adjoint subgroup action)

J T

( T x N )x( U(1) x SU(2) x SU(3) x L )
~ ~ / ~
translations  nilpotent internal symmetries Lorentz group

(all the exolicity goes here)

Standard Model internal symmelries

Unification happens not because of a heavy symmetry breaking.

But because of common adjoint subgroup action on "hidden" nilpotent internal symmetries.
Minimal exoticity: we inject subgroups where they naturally belong in Levi decomposition.
Unification achieved not by symmetry breaking but by symmetry hiding.

Bonus: L.Snobl, J.Phys.A43(2010)505202 says: max 1 copy of U(1) can be present.

On the possible role of nilootent internal symmetries in unification — . 15/40
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® In a conservative Poincare extension, non-Poincaré symmetries are all internal.

matter field configurations

any conservative extension of Poincare group = 5 e
= ﬁ\"\
. an e
. . . , = || all
{all internal symmetries} x {Poincare} — = )| | non-pincre
= )| symmetrie
£/
Lo

-

spacetime manifold

(SUSY does not admit this property.)

® Constructed an example:
See J.Phys.A50(2017)115401, with & = U(1).
It is the symmetry group acting on a QF T-inspired algebra valued fields.

Price to pay: the full internal symmetry group is not purely {compact} but

{nilpotent} x {compact}

(Issue: nilpotent generators — corresp. gauge fields have zero YM kinetic Lagrangian!!)

On the possible role of nilootent internal symmetries in unification — o. 13/40
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In a conservative Poincaré group extension: there exists a homomorphism of

pYY

N x| GiX...xG,, X P —_ G x...xGh,, X P
S~ — s S~ S—— S~~~
nilpotent internal compact internal  Poincare symmetries compact internal  Poincare symmetries
symmelries symmetries symmetries
~ ~
unified group, acting on fundamental field degrees of freedom observed symmelries, acting on some derived

field quantities which are function of
fundamental degrees of freedom

No immediate contradiction with experimental situation.
(Nilpotent internal symmetries can act "hidden” in some fundamental d.o.f.)

Distant analogy:

\\Y ——  Fierz bilinears of W
S— — w s’
U(1)xPoincaré acts onit only Poincaré acts on it

The Fierz bilinears forget the fundamental U(1) symmetry of Dirac bispinor fields.
L\ (But such "forgetting function" mechanism works also for semi-direct product.)

On the possible role of nilootent internal symmetries in unification — o. 14/40
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Eliminating nilpotent gauge fields

Presence of some nilpotent gen;rators acting on the matter field sector could be plausible.
But what to do with corresponding gauge fields?

They have vanishing Yang-Mills kinetic term = don't have kinetic energy, don't propagate.
They eventually still could contribute to matter field Lagrangians.

But then, their Euler-Lagrange equations would be strange, wouldn't it?
(Some algebraic equations, without kinetic wave operator.)

On the possible role of nilootent internal symmetries in unification — o. 16/40
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Perspectives

Least exotic solution to gauge—spacetime and gauge—gauge symmetry unification:
conservative unification pattern.

(nonvanishing adjoint subgroup action)

J T

( T X N )x( U(l) x SU(2) x SU(3) x L )
S~~~ S~ / ~
translations  nilpotent internal symmetries Lorentz group

(all the exolicity goes here)

Standard Model internal symmelries

Unification happens not because of a heavy symmetry breaking.

But because of common adjoint subgroup action on "hidden" nilpotent internal symmetries.
Minimal exoticity: we inject subgroups where they naturally belong in Levi decomposition.
Unification achieved not by symmetry breaking but by symmetry hiding.

Bonus: L.Snobl, J.Phys.A43(2010)505202 says: max 1 copy of U(1) can be present.

On the possible role of nilootent internal svmmetries in unification — o. 15/40
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Observation:
The ordinary Dirac kinetic Lagrangian can be regarded with a D(1)xU(1) internal group.

Loiac(+“. W. V') = v, Re (TL" iV,-\I-')

(v, Is the metric volume form, V, is the metric + D(1)xU(1) gauge-covariant derivation.)

This, besides usual local U(1) gauge invariance, is also locally D(1) gauge invariant:

\Js O 2y
2>=0
~1
~, €1 l‘——> gz ,_‘.:r
3 3 3 3
X Q ?v,02 =Vv,+Q ?d,0°

But has also an unusual hidden affine “shift” symmetry:

s s

Cd
-~ I > ~, 1

vﬂl vﬂl T ('h

V]

(C'; I1s any real covector field, i.e. a D(1) gauge potential.)

On the possible role of nilootent internal symmetries in unification — o. 17/40
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In total, this causes an unusual local internal symmetry:

L () 2y
2>0 5
~ '_> SI_ . a
— 3 a3
V;, V,, T ,(,.),-/'“’(T;]'E:Lf_,

The D(1) group can act locally internally and faithfully on matter fields,
but without a compensating D(1) gauge field!
(The D(1) gauge field is formally present, but can be transformed out from the Lagrangian.)

Can similar trick be used to get rid of nilpotent gauge bosons?
Answer: yes.

Andras Laszlo, Lars Andersson: arXiv1909.02208 as a toy model.

Necessary condition for this: to reside in a normal sub-Lie algebra of internal symmetries.

On the possible role of nilootent internal svmmetries in unification — o. 18/40
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In total, this causes an unusual local internal symmetry:

V0 O 2y
2>0
—_3 A
Vi, Vi L OFEQ2

The D(1) group can act locally internally and faithfully on matter fields,
but without a compensating D(1) gauge field!
(The D(1) gauge field is formally present, but can be transformed out from the Lagrangian.)

Can similar trick be used to get rid of nilpotent gauge bosons?
Answer: yes.

Andras Laszlo, Lars Andersson: arXiv1909.02208 as atoy model.

Necessary condition for this: to reside in a normal sub-Lie algebra of internal symmetries.

On the possible role of nilootent internal symmetries in unification — o. 18/40
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Observation:
The ordinary Dirac kinetic Lagrangian can be regarded with a D(1)xU(1) internal group.

Loiac(7". W. V) =  v. Re (Ti' iw)

(v, is the metric volume form, V,, is the metric + D(1)xU(1) gauge-covariant derivation.)

This, besides usual local U(1) gauge invariance, is also locally D(1) gauge invariant:

\Js (2 T
Q>0
~, €1 l—"‘é gz 1 - €1
3 3 3
Vi Q ?v0 =Vv,+Q ?d,0
But has also an unusual hidden affine “shift” symmetry:
s s
Cd
vﬂl vﬂl F( ‘h

(C'; I1s any real covector field, i.e. a D(1) gauge potential.)

On the possible role of nilootent internal symmetries in unification — o. 17/40
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In total, this causes an unusual local internal symmetry:

L () =
Q>0 ]
~ 01 |_> () - ~
Vi, 2 O Q2

The D(1) group can act locally internally and faithfully on matter fields,
but without a compensating D(1) gauge field!
(The D(1) gauge field is formally present, but can be transformed out from the Lagrangian.)

Can similar trick be used to get rid of nilpotent gauge bosons?
Answer: yes.

Andras Laszlo, Lars Andersson: arXiv1909.02208 as atoy model.

Necessary condition for this: to reside in a normal sub-Lie algebra of internal symmetries.

On the possible role of nilootent internal symmetries in unification — o. 18/40
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Our concrete example group

The smallest nilpotent Lie group is the 3 generator Heisenberg group Hs.

Generated by ¢, p, ¢, the only nonzero bracket being (¢, p] = K ¢ (K arbitrary nonzero real).
The outer derivations of the Lie algebra of H3(C) is nothing but gl(2.C).

Thus, one can form H3(C) x GL(2.C) (GL(2.C) mixes q, p, while scales ¢ by determinant).

= GL(2.C)

(7 x H© )= ( U1 x D) xSLE20))
translations Heisenberg group compact internal dilations Lorentz

IS indecomposable conservative Poincaré group extension with a compact component.
(arXiv1909.02208)

We construct a generally covariant Lagrangian, by taking a vector bundle with
H3(C) x GL(2,0C)
as structure group.

First, we need to find nice defining representation and its invariants.

On the possible role of nilootent internal symmetries in unification — 0. 19/40
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Let A be a 2 generator (4 dimensional) complex Grassmann algebra.
(Representation A = A(S*) is always possible, where S is two-spinor space.)

|

el fe 0] |
a e T O L],
Ao ¢ . D \ |

It turns out that H3(C) is isomorphic to L ;¢ 4, (left multiplication, i.e. “particle insertion”).

And of course, GL(2.C) naturally actson A = A(S*)as GL(S™) = U(1) x D(1) x SL(2.C)

On the possible role of nilootent internal symmetries in unification — . 20/40
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Re-understanding Coleman-Mandula (knowing Levi decomp.th.)

Essence of Coleman-Mandula-like no-go theorems (assuming finite dimensionality):

® Full symmetry group is a Poincaré group extension = O’Raifeartaigh A or B or C.
(no other possibilities exist Lie group theoretically)

®» Complementing symmetries to Poincaré symmetries have positive definite invariant
"internal” scalar product = no O'Raifeartaigh B.

® No symmetry breaking present = no O'Raifeartaigh C.

Our mechanism: internal group is N x (+ = internal scalar product degenerates on N’ = v
SUSY: similar degeneration over the pure supertranslations Q = v/
(super-Lie algebra is a complicated way to say that we allow certain kind of nilradical)

Both are O'Raifeartaigh B mechanism.

Attention! Coleman-Mandula also has a hidden assumption:

$» Symmetry generators strictly conserve 1-particle subspaces.
= No extra representation space for generators possibly stepping in the Fock hierarchy.
——  (Are we sure on this assumption?!) —

On the possible role of nilootent internal symmetries in unification — o. 27/40
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Summary

® SUSY experimentally not visible at present. As of 2019 status.

°

Mathematical alternatives to SUSY exist. Are also O'Raifeartaigh B type, as SUSY.

°

The alternative: "conservative" extensions of the spacetime symmetries. The
complementing symmetries to spacetime symmetries are all strictly internal.

Example constructed. At present, merely with U(1) as compact gauge group.
It connects gauge and spacetime symmetries. Similarly to extended SUSY.

Harmonizes with present experimental situation. Extra symmetries are "hidden".

® o @ b

Symmetry "hiding"”. Symmetry breaking is not the only mechanism to get rid of exotics.

°

Testing on minimal model. |t seems we can construct a minimal model.

J.Phys.A50(2017)115401, arXiv1909.02208.

On the possible role of nilootent internal symmetries in unification — o. 28/40
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We take A-valued vector bundle over 4d spacetime manifold, with discussed structure group.
(The invariant Lagrangians are based largely on the invariant form L.)

spin algebra valued fields

i

f "
0 i 1] —
_ Encodes per spacetime point:
! ! creation op. algebra for 2 fundamental d.o.f.,
i i ‘ Pauli principle,

charge conjugation.

4d spacetime manifold

Early attempt: R.M.Wald, S.Anco: Phys.Rev.D39(1989)2297 with algebra valued fields.
(But they took too simple algebra for this.)

On the possible role of nilootent internal svmmetries in unification — . 25/40
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