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Abstract: Magnetic skyrmions are topological solitons which occur in a large class of ferromagnetic materials and which &nbsp;are currently
attracting much attention, not least because of their potential use for & nbsp;low-energy magnetic information storage and manipulation. The talk is
about an integrable model for magnetic skyrmions, introduced in a recent paper (arxiv:1812.07268) and generalised in & nbsp;arxiv:1905.06285.
The model is based on a geometrical interpretation of the Dzyal oshinskii-Moriya interaction in terms of a non-abelian gauge field.& nbsp; In the talk
will explain the model and the geometry behind its solution, and discuss solutions and their applications.
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A Solvable Model for Magnetic Skyrmions

3
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Magnetic Skyrmions - Experiment

Lorentz TEM images of Fey5CoqsSi

Helical structure Skyrmion lattice
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Magnetic Skyrmions - Experiment

Imaging Néel-type skyrmions

Bloch-type Néel-type

e-beam ) _
direction Magnetization
® Dellection of the beam

f",,,,',y_ l[i" A H
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Magnetic Skyrmions - Theory

The energy of the lattice model is

E[S|=) —JS;-§+D;-S;xS-> B-Si+ Y (k-S)

h Heisgwberg DMI < , kj P

T
Zeeman magnetic anisotropy

The continuum limit is

Eln] = / %(Vn)2+ZDaf(Um>< M)a+ 12(1 = ng) + k(1 — nj) dxy A dx,
JR2

a,

where the spiralization tensor D encodes the Dzyaloshinskii-Moriya
(DM) spin-orbit interaction.
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A very brief history

3

» Topological twists in the magnetisation field of real planar magnetic
materials (Bogdanov and Jablonskii 1989)

» Past 10 years: technological interest as potential information carriers
in low-energy magnetic racetrack memory devices.
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Pure Heisenberg model revisited

Basic field is the unit magnetisation vector
n:R?> — S% C su(?),
with energy A

E[n| = %./ﬂ;z((& n)? + (Dan)?)dxy A dxs.

For this to be finite, require existence of limit lim,|_, ., n(X) = N, so that
n extends to map
n:R?U {0} - S,

with integer degree

deg[n] = é / n-[01n, dn] dxy A dXo.
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The Bogomol'nyi argument

Write energy as

E[n] = % /[p>2 ((O1n= [n,02n]) £ n-[01n,02n]) dXy A dXo,

3

to deduce lower bound
E[n] > 4r|deg[n]|

with equality iff the Bogomol'nyi equations holds:
on = ?[ﬂH L}gn]
They imply the variational equations

[n, (82 + 93)n] = 0.
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Invariant formulation

Consider Riemann surface ¥ with local complex coordinates
Z=X+iXo, 0;=72%(0 —i0y).
The Hodge * operation on 1-forms is a complex structure:

xdz = —idz, xdZ =¥d2Z,
The energy only depends on complex structure:

E[n] = %—.A(dn,/\ *dn)

_ %_/)_;((dnx W[n, dn), A+ (dn ¥ «[n, dn])) + %'L(n, (dn. dn)).

and the Bogomol'nyi equations are

*xdn = +[n, dn].
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Stereographic projection
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In terms of stereographic coordinate w € C U {o0}:

" dw A xdwW
Ew) =2 | G

_2/' (dwtf*dw)/\*(dwﬂ*aw)ﬂ/- aw A dW
Jx (1 + |w[?)? Js (

Bogomol'nyi equations are
dw = +i* dw.

This is equivalent to
osw =0 or o,w=020.

14 [w[?)?
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Belavin-Polyakov instantons
General solution with w,, = 0 for degree n > 0 is holomorphic map of
degree n, so a rational map of the form

At aiz+...ap 12"
b+ biz+...b,_ 4z 207
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Baby Skyrmions

Can construct a toy-model for 3d Skyrmions by breaking scale invariance:
E[n] = % / ((01 n)2 -+ (02[7)2 -+ lw'-[i)1 n, ﬂ)gn]g -+ /1.2(1 — ng))dX1 A dXo.
JIR2

» Energy still bounded by 47 x |degree|, but bound not attained by

solutions
» Solutions exponentially localised
» Baby skyrmions exert orientation-dependent forces on each other.
» Need numerical methods for detailed study.
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Magnetic skyrmions at critical coupling

Critical combination of Zeeman energy and easy plane potential:

20— = (1~ 1) — (1 B)

leads to energy

"

.2
2(Vn)2 LRV x N+ (1 — my)2 dxy A dxo, where
IR

Es[n] = 5

where V~% x n = R3(—«)e; x 9;n so that spirality tensor is rotation and
DMI terms is

K COS (N1 DaNg — Npd1 N3 + N3(A1 N2 — DaNy))
+ Kk SIn (r(—n1 1Nz — NodoNg + n3(01 n + L')gng).

Variational equation is

2k(n-V-*)n = (An+ x?(1 — n3)e3) x n.
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A gauged sigma model
Consider principal SU(2) bundle over ¥ with connection A and associated
adjoint vector bundle with section n valued in unit sphere. With
Dn = dn+[A, n| Fa=dA+ANA,

3

consider the energy functional

E[A,n]_L %(Dn,A*Dn)—(F,n).

—

Use 1(n [Dn, Dn]) = =(n,[dn,dn]) + (F,n) — d(A, n) to write

2

E[A, n] / (Dn — «[n, Dn]), A x (Dn — x[n, Dn]))

-h-l

/ (n, [dn, dn]) — /e'n:(A’ n).

l\){—L
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A modified energy functional

Consider

Emm:Emm+/(Am
J oY
so that

E[A.n] = %_/;((Dn— x[n, Dn]), A % (Dn — %[n, Dn]))

+1/n¢mu@
2 Js

Now fix A and impose Bogomol'nyi equation in the boundary region. Then

JHAm——/

«DA*Dn+FLMH+/“&me
Jr

JO¥L

So variational problem for E[A, n] with respect to n is well-defined even for
variations dn = [¢, n] which vanish slowly as we approach o%.
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Unitary versus holomorphic structures and a useful formula

» Any unitary connection on a C?-bundle over a Riemann surface ¥,
has curvature of the form

Fzgdz ANdZ

l.e. of type (1,1).

» By Atiyah, Hitchin, Singer 1978 this means that the connection A
defines a holomorphic structure and that one can choose a
holomorphic gauge where A; = 0, i.e. D, = 9,.

» In a unitary gauge, the connection can locally be written in the form
A=90:9g7'dz+ (g ")o,g9'dz, g:Uc T — SLE2,C)

See also Karabali and Nair, 1996.
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Solving gauged o —models

In terms of stereographic coordinates on S? and complex coordinates z
on ¥, the Bogomol'nyi equation is

Dw = ixDw < (03 + As)w = 0.

If A = gd>g~', can solve this explicitly by goihg to the holomorphic
gauge in terms of

a b
g= (c d) U — SL(2,0C),

via

c + df

- a+ bf

for any meromorphic function f.
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Magnetic skyrmions from Gauged o—models

Consider ¥ = C and Cartan’s ‘helical staircase connection’
As = —r(tidxy + bdxo), Fs = h'.2t3dX1 A dXo.

in terms of basis t, &, t3 of su(2). Recall

3

E[A 1] = /\Z %(Dn,m Dn) — (F. n),

and, for o« = 0,
. 1 2

Es[n] = ~

snj Je 2

After some calculation,

E[As, n] = Es[n].

where we replaced n — n.

(VN +kn-V x n+ %(1 — ng)? dxy A dxo.
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Modified energy

The modified energy

E[A,n]:'/;%(on,/\*on)(F,n)+ / (A, n)

X Jox
reproduces the energy functional proposed in L Déring, C Melcher,
Calculus of Variations 2017:

"1

Esln] = e 2

2
(VN + x(n—e3) - Vxn+ %(1 — 3)? dxy A dxo.

In other words

E[As.n] = Es[n].
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Harmonic magnetic skyrmions

To solve the Bogomol'nyi equation we note
g3
(As):=gdz2g"".  g= (; 2y Z) -

The general solution of the gauged sigma model in this case is

I =
w=—, v(z,2) = Ef.-.@""z + f(2),

with f : C — CP' holomorphic.
Reconstruct magnetisation field via

2V v -1

ny + ino = , Ny = ——.
T - R TV
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Hedgehogs and line defects

From v = —fxe'“Z obtain hedgehog field

sind(rycos(¢ ++)\ |
n= | sind(r)sin(¢+~) | . Z = re'?,

cos(r)

with .
= E — Y — —1 “
=5 f(r) = 2tan (h’f) _

(also L Déring, C Melcher, Calculus of Variations 2017)
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Figure: Top from left to right: Bloch skyrmion v = —52 and Néel skyrmion v = 1Z.

Bottom from left to right: a shifted Bloch skyrmion v = —£Z + 1(3 — 2i) and the
anti-skyrmion configuration v = ——52 + 3iz.
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Hedgehogs and line defects

From v = —fxe'“Z obtain hedgehog field

sind(rycos(¢ ++)\ |
n= | sind(r)sin(¢+~) | . Z = re'?,

cos(r)

with .
= E — Y — —1 “
=5 f(r) = 2tan (h’f) _

(also L Déring, C Melcher, Calculus of Variations 2017)
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From v = —£x(Z + z) find defect line along x = 0:
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Energy, degree and vorticity

The energy of solutions can be written as

3

Esln] = 4ndegln] ~ | (As.n)

JOL

where
(As, n) = —H(n1 dX1 + nngQ).

For which configurations is this well-defined?
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Figure: Stretching and squeezing for the configuration v = — 5z + az with a = 0.3

£Z
2
(top left), a = 0.4 (top right), a = 0.5 (bottom left) and a = 0.7 (bottom right).
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Figure: Magnetisation and energy density for N = 2 solution v = £z + $2°. This
is an example of a configuration involving a skyrmion and three anti-skyrmions.
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Figure: Magnetisation and energy density for the skyrmion bag defined by

-
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Figure: Magnetisation and energy density for N = 2 solution v = £z + $2°. This
is an example of a configuration involving a skyrmion and three anti-skyrmions.
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Figure: Magnetisation and energy density for the skyrmion bag defined by

-
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Figure: The numerically computed ground state: an infinite skyrmion lattice. From
Lin, Saxena and Batista, Phys Rev B 91 (2015) 224407)
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Figure: The numerically computed phase diagram. From Lin, Saxena and Batista,
Phys Rev B 91 (2015) 224407)
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Rank 1 magnetic skyrmions
Translation of DMI term into gauge theory according to

’Da,-(rf),-n X n)a = (Aj,_ [(‘_),-n, n])
Rank 1 materials correspond to flat connections

3

0
D=1{0 @A:atgd)ﬁ.
a

o O O
o OO

The energy is
. 1 - 2 1 ; 2 . - 1 nz
—|01n|* + <|d2n|® — a(N2d1ny — No1N2) — =(1 — Ng) | dxydXo,
Jrz \ 2 2 2

and solutions of the Bogomol'nyi equations include skymions,
anti-skyrmions and domain walls

w=ewPZ oy gwP2) oy, ey

q(2) q(2)
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Conclusion and Questions

» Magnetic skyrmions at critical coupling are holomorphic sections of
CP'-bundle with connection determined by the DMI term.

Exact solutions predict unexpected multi-soliton configurations.
Lattice version?

Stability of multi-solitons?

What is the time evolution?

v v v v
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