Title: Discovering the Goddess of the Night with Machine Learning
Speakers: Miriangela Lisanti
Collection: Cosmological Frontiers in Fundamental Physics 2019
Date: September 06, 2019-9:30 AM
URL: http://pirsa.org/19090021
Abstract: The Gaia mission is in the process of mapping nearly 1% of the Milky Wayâ $€^{\mathrm{TM}_{s}}$ stars. This data set is unprecedented and provides a unique view into the formation history of our Galaxy and its associated dark matter halo. My talk will focus primarily on recent work using deep learning methods to classify Gaia stars that were born inside the Milky Way, versus those that were accreted from satellite mergers. Using these techniques, we discovered a vast stellar stream, called Nyx (after the Goddess of the Night), in the Solar vicinity that co-rotates with the Galactic disk. If Nyx is the remnant of a disrupted dwarf galaxy, it may provide the first evidence for an accreted stellar disk and a dark matter disk.

Discovering the Goddess of the Night with Machine Learning

Mariangela Lisanti
Princeton University

Local Dark Matter Map

Dark matter can scatter off a nucleus in a detector to yield an observable nuclear recoil

Before

After

$$
\text { (D) } \vec{p}-\vec{q}
$$

Need a phase-space map of the halo to accurately predict scattering rate

$$
\text { Rate }=n\langle\sigma v\rangle
$$

The Dark Matter Halo v1.0

Treat the dark matter as a collision-less fluid with phase space distribution

$$
f(x, p, t)
$$

conservation of fluid mass

$$
\frac{\partial f}{\partial t}+\dot{x} \frac{\partial f}{\partial x}+\dot{p} \frac{\partial f}{\partial p}=0
$$

additional assumptions
steady state isotropic velocities flat rotation curve
\downarrow
isothermal density
$n \sim r^{-2}$

The Local Milky Way's Family Tree

Quiet Merger History

Galactic Cannibalism \& Dark Matter

Unveiling the Milky Way's Past with Gaia

Putting Machine Learning to Use

Simulated Galaxy Formation

Stellar Structure Evolution in the FIRE Simulation

Hopkins et al. (2015)
-9.9

Simulated Galaxy Formation

Stellar Structure Evolution in the FIRE Simulation

Hopkins et al. (2015)
$=0.00$

The Very Old Halo

As proto-Milky Way forms, its potential varies significantly with time

This redistributes energy of dark matter and stars from early mergers, mixing them in phase space

$$
\frac{d E}{d t}=\frac{\partial \Phi}{\partial t}
$$

The Very Old Halo

Oldest stars and dark matter in a galaxy share similar kinematics today
Herzog-Arbeitman, ML, Madau, and Necib, PRL (2018) Herzog-Arbeitman, ML, and Necib, JCAP (2018)

Present-day velocities of stars and dark matter from oldest mergers in FIRE galaxy

$v_{\theta}[\mathrm{km} / \mathrm{s}]$

Necib, ML, Garisson-Kimmel, et al. [1810.12301]

Younger Mergers

Once proto-galaxy in place, energy of tidal debris is conserved during merger

Streams of dark matter and stars created as a satellite falls in

Tidal Streams

Differences in spatial distributions lead to offsets in stellar and dark matter velocity distributions

Younger Mergers

After many orbits, the spatial coherence of tidal debris is lost Velocity features remain
satellite galaxy

Debris Flow in Simulations

Kinematic features in stars trace underlying dark matter substructure

Present-day distributions of stars and dark matter from a recent merger in FIRE galaxy

Necib, ML, Garisson-Kimmel, et al. [1810.12301]

Debris Flow in Simulations

Kinematic features in stars trace underlying dark matter substructure

Present-day distributions of stars and dark matter from a recent merger in FIRE galaxy

Necib, ML, Garisson-Kimmel, et al. [1810.12301]

Debris Flow in Simulations

Kinematic features in stars trace underlying dark matter substructure

Present-day distributions of stars and dark matter from a recent merger in FIRE galaxy

Necib, ML, Garisson-Kimmel, et al. [1810.12301]

Mergers that build up the Milky Way leave their imprint in a wealth of spatial and velocity structures

Use stars as visible tracers for the dark matter halo that was built up from luminous galaxies

NOTE: Stars do not trace any additional dark matter that may originate from non-luminous galaxies. Separate techniques are needed to map this component.

The Gaia Mission

Gaia Collaboration (2018)

Gaia is the follow-up astrometric survey to the Hipparcos mission (1989-1993)

Launched December 2013; second data release April 2018

Provides measurements for over a billion stars, $\sim 1 \%$ of the Milky Way's stars

Milky Way Archaeology

Chemical Abundance

The average stellar metallicity of a galaxy is correlated with its mass
Stars with similar chemical abundance can be linked to a parent galaxy

Accreted Stars

Accreted stars are typically older than those born in the Milky Way disk
Their velocity and spatial distributions also differ from disk stars

Johnston et al. (1996), Helmi \& White (1999), Bullock et al. (2001), Harding et al. (2001)

Gaia Enceladus

Single merger dragged in the majority of the local accreted stars
Belokurov et al. (2018); Helmi et al. (2018)

SDSS-Gaia Cross Match

Necib, ML, and Belokurov [1807.02519]

SDSS-Gaia Cross Match

HALO	SUBSTRUCTURE	DISK
very metal-poor stars	intermediate metallicity stars	metal-rich stars
old dark matter halo	dark matter substructure	

Necib, ML, and Belokurov [1807.02519]

The Local Neighborhood

Necib, ML, and Belokurov [1807.02519]

Halo

Enceladus

ML, Spergel, and Madau (2014)
Herzog-Arbeitman, ML, Madau, and Necib (2018) Necib, ML, Garrison-Kimmel, et al. (2018)

Dark Matter-Stellar
Correlation

(Not including contribution from non-luminous galaxies)

Ananke

Sanderson et al. [1806.10564]

Gaia

Training the Network

FIRE m12i Galaxy

Training the Network

FIRE m12i Galaxy

Training the Network

Transfer training is important: Retrain last layer of network on new galaxy

Training the Network

Network successfully recovers distributions for new galaxy, even when merger history is distinct from galaxy it was trained on

network trained on a galaxy with
distributions shown in blue
network prediction for new galaxy
shown in dotted black
truth distributions for new galaxy shown in orange
B. Ostdiek, L. Necib, T. Cohen, M. Freytsis, ML, et al. [1907.06652]

Training the Network

Milky Way Galaxy

Gaia DR2 Accreted Star Catalog

We built the first catalog of accreted stars in Gaia DR2
B. Ostdiek, L. Necib, T. Cohen, M. Freytsis, ML, et al. [1907.06652]

With this catalog, we find evidence for Enceladus near the Solar position, as well as a vast new stellar stream

Gaia stars labeled as accreted with high confidence

L. Necib, B. Ostdiek, ML, T. Cohen, et al. [1907.07190, 1907.07681]

The Nyx Stream

~500 stars with coherent velocities passing near the Sun
Nyx stars rotate more slowly than disk stars and are on more eccentric orbits

L. Necib, B. Ostdiek, ML, T. Cohen, et al. [1907.07190, 1907.07681]

The Nyx Stream

Nyx stream can be explained as the tidal debris of a massive dwarf galaxy disrupted in the Milky Way's disk

May also be due to perturbations of Milky Way disk stars from bar or spiral arms, but these explanations do not fit all pieces of evidence

Further spectroscopic observations of Nyx stars will be crucial for confirming its accreted origin

The Nyx Stream

Nyx stream can be explained as the tidal debris of a massive dwarf galaxy disrupted in the Milky Way's disk
 could be associated with a rotating disk of dark matter

Read et al. [0803.2714]; Read et al. [0902.0009]; Purcell et al. [0906.5348]

May also be due to perturbations of Milky Way disk stars from bar or spiral arms, but these explanations do not fit all pieces of evidence

Further spectroscopic observations of Nyx stars will be crucial for confirming its accreted origin

Local Dark Matter

