Title: Discovering the Goddess of the Night with Machine Learning

Speakers: Miriangela Lisanti

Collection: Cosmological Frontiers in Fundamental Physics 2019

Date: September 06, 2019 - 9:30 AM

URL: http://pirsa.org/19090021

Abstract: The Gaia mission is in the process of mapping nearly 1% of the Milky Way's stars. This data set is unprecedented and provides a unique view into the formation history of our Galaxy and its associated dark matter halo. My talk will focus primarily on recent work using deep learning methods to classify Gaia stars that were born inside the Milky Way, versus those that were accreted from satellite mergers. Using these techniques, we discovered a vast stellar stream, called Nyx (after the Goddess of the Night), in the Solar vicinity that co-rotates with the Galactic disk. If Nyx is the remnant of a disrupted dwarf galaxy, it may provide the first evidence for an accreted stellar disk and a dark matter disk.

Pirsa: 19090021 Page 1/37

Discovering the Goddess of the Night with Machine Learning

Pirsa: 19090021 Page 2/37

Local Dark Matter Map

Dark matter can scatter off a nucleus in a detector to yield an observable nuclear recoil

Need a phase-space map of the halo to accurately predict scattering rate

Rate =
$$n \langle \sigma v \rangle$$

The Dark Matter Halo v1.0

Treat the dark matter as a collision-less fluid with phase space distribution

conservation of fluid mass

$$\frac{\partial f}{\partial t} + \dot{x}\,\frac{\partial f}{\partial x} + \dot{p}\,\frac{\partial f}{\partial p} = 0$$

additional assumptions

steady state isotropic velocities flat rotation curve

Maxwell-Boltzmann

$$f(v) \sim e^{-v^2/2\sigma^2}$$

isothermal density

 $n \sim r^{-2}$

Ostriker, Peebles, and Yahil (1974); Bahcall and Soneira (1980); Caldwell and Ostriker (1981); Drukier, Freese, and Spergel (1986)

Pirsa: 19090021 Page 4/37

The Local Milky Way's Family Tree

Quiet Merger History

Pirsa: 19090021 Page 5/37

Galactic Cannibalism & Dark Matter

Unveiling the Milky Way's Past with Gaia

Putting Machine Learning to Use

Pirsa: 19090021 Page 6/37

Simulated Galaxy Formation

Stellar Structure Evolution in the FIRE Simulation Hopkins et al. (2015)

z = 9.910 kpc

Video by Shea Garisson-Kimmel, http://www.tapir.caltech.edu/~sheagk/firemovies.html

Pirsa: 19090021 Page 7/37

Simulated Galaxy Formation

Stellar Structure Evolution in the FIRE Simulation Hopkins et al. (2015)

z=0.00

0 kpc

Video by Shea Garisson-Kimmel, http://www.tapir.caltech.edu/~sheagk/firemovies.html

Pirsa: 19090021 Page 8/37

The Very Old Halo

As proto-Milky Way forms, its potential varies significantly with time

This redistributes energy of dark matter and stars from early mergers, mixing them in phase space

$$\frac{dE}{dt} = \frac{\partial \Phi}{\partial t}$$

The Very Old Halo

Oldest stars and dark matter in a galaxy share similar kinematics today

Herzog-Arbeitman, ML, Madau, and Necib, PRL (2018) Herzog-Arbeitman, ML, and Necib, JCAP (2018)

Present-day velocities of stars and dark matter from oldest mergers in FIRE galaxy

Necib, ML, Garisson-Kimmel, et al. [1810.12301]

Pirsa: 19090021 Page 10/37

Younger Mergers

Once proto-galaxy in place, energy of tidal debris is conserved during merger

Streams of dark matter and stars created as a satellite falls in

Pirsa: 19090021 Page 11/37

Tidal Streams

Differences in spatial distributions lead to offsets in stellar and dark matter velocity distributions

Necib, ML, Garrison-Kimmel, et al. [1810.12301]

Pirsa: 19090021 Page 12/37

Younger Mergers

After many orbits, the spatial coherence of tidal debris is lost Velocity features remain

Pirsa: 19090021 Page 13/37

Debris Flow in Simulations

Kinematic features in stars trace underlying dark matter substructure

Present-day distributions of stars and dark matter from a recent merger in FIRE galaxy

Necib, ML, Garisson-Kimmel, et al. [1810.12301]

Pirsa: 19090021 Page 14/37

Debris Flow in Simulations

Kinematic features in stars trace underlying dark matter substructure

Present-day distributions of stars and dark matter from a recent merger in FIRE galaxy

Necib, ML, Garisson-Kimmel, et al. [1810.12301]

Pirsa: 19090021 Page 15/37

Debris Flow in Simulations

Kinematic features in stars trace underlying dark matter substructure

Present-day distributions of stars and dark matter from a recent merger in FIRE galaxy

Necib, ML, Garisson-Kimmel, et al. [1810.12301]

Pirsa: 19090021 Page 16/37

Mergers that build up the Milky Way leave their imprint in a wealth of spatial and velocity structures

Use stars as visible tracers for the dark matter halo that was built up from luminous galaxies

NOTE: Stars do not trace any additional dark matter that may originate from non-luminous galaxies. Separate techniques are needed to map this component.

Pirsa: 19090021 Page 17/37

The Gaia Mission

Gaia Collaboration (2018)

Gaia is the follow-up astrometric survey to the Hipparcos mission (1989-1993)

Launched December 2013; second data release April 2018

Provides measurements for over a billion stars, ~1% of the Milky Way's stars

Pirsa: 19090021 Page 18/37

Pirsa: 19090021 Page 19/37

Chemical Abundance

The average stellar metallicity of a galaxy is correlated with its mass

Stars with similar chemical abundance can be linked to a parent galaxy

Pirsa: 19090021 Page 20/37

Accreted Stars

Accreted stars are typically older than those born in the Milky Way disk

Their velocity and spatial distributions also differ from disk stars

Johnston et al. (1996), Helmi & White (1999), Bullock et al. (2001), Harding et al. (2001)

Pirsa: 19090021 Page 21/37

Gaia Enceladus

Single merger dragged in the majority of the local accreted stars

Belokurov et al. (2018); Helmi et al. (2018)

Video Credit: H. H. Koppelman, A. Villalobos, A. Helmi (University of Groningen)

Pirsa: 19090021 Page 22/37

SDSS-Gaia Cross Match

Pirsa: 19090021 Page 23/37

SDSS-Gaia Cross Match

Necib, ML, and Belokurov [1807.02519]

Pirsa: 19090021 Page 24/37

The Local Neighborhood

Necib, ML, and Belokurov [1807.02519]

(Not including contribution from non-luminous galaxies)

Pirsa: 19090021 Page 25/37

Pirsa: 19090021 Page 26/37

Pirsa: 19090021 Page 27/37

FIRE m12i Galaxy

Pirsa: 19090021 Page 28/37

FIRE m12i Galaxy

Pirsa: 19090021 Page 29/37

Transfer training is important: Retrain last layer of network on new galaxy

Pirsa: 19090021 Page 30/37

Network successfully recovers distributions for new galaxy, even when merger history is distinct from galaxy it was trained on

B. Ostdiek, L. Necib, T. Cohen, M. Freytsis, ML, et al. [1907.06652]

network trained on a galaxy with distributions shown in blue

network prediction for new galaxy shown in dotted black

truth distributions for new galaxy shown in orange

Pirsa: 19090021 Page 31/37

Page 32/37 Pirsa: 19090021

Gaia DR2 Accreted Star Catalog

We built the first catalog of accreted stars in Gaia DR2

B. Ostdiek, L. Necib, T. Cohen, M. Freytsis, ML, et al. [1907.06652]

With this catalog, we find evidence for Enceladus near the Solar position, as well as a vast new stellar stream

Gaia stars labeled as accreted with high confidence

L. Necib, B. Ostdiek, ML, T. Cohen, et al. [1907.07190, 1907.07681]

Pirsa: 19090021 Page 33/37

The Nyx Stream

~500 stars with coherent velocities passing near the Sun

Nyx stars rotate more slowly than disk stars and are on more eccentric orbits

L. Necib, B. Ostdiek, ML, T. Cohen, et al. [1907.07190, 1907.07681]

Pirsa: 19090021 Page 34/37

The Nyx Stream

Nyx stream can be explained as the tidal debris of a massive dwarf galaxy disrupted in the Milky Way's disk

May also be due to perturbations of Milky Way disk stars from bar or spiral arms, but these explanations do not fit all pieces of evidence

Further spectroscopic observations of Nyx stars will be crucial for confirming its accreted origin

Pirsa: 19090021 Page 35/37

The Nyx Stream

Nyx stream can be explained as the tidal debris of a massive dwarf galaxy disrupted in the Milky Way's disk

could be associated with a rotating disk of dark matter

Read et al. [0803.2714]; Read et al. [0902.0009]; Purcell et al. [0906.5348]

May also be due to perturbations of Milky Way disk stars from bar or spiral arms, but these explanations do not fit all pieces of evidence

Further spectroscopic observations of Nyx stars will be crucial for confirming its accreted origin

Pirsa: 19090021 Page 36/37

Pirsa: 19090021 Page 37/37