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Abstract: The Gaia mission is in the process of mapping nearly 1% of the Milky Way&€™s stars. This data set is unprecedented and provides a
unique view into the formation history of our Galaxy and its associated dark matter halo. My talk will focus primarily on recent work using deep
learning methods to classify Gaia stars that were born inside the Milky Way, versus those that were accreted from satellite mergers. Using these
techniques, we discovered a vast stellar stream, called Nyx (after the Goddess of the Night), in the Solar vicinity that co-rotates with the Galactic
disk. If Nyx isthe remnant of adisrupted dwarf galaxy, it may provide the first evidence for an accreted stellar disk and a dark matter disk.
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Local Dark Matter Map

Dark matter can scatter off a nucleus in a detector to
yield an observable nuclear recoil
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The Dark Matter Halo v1.0

Treat the dark matter as a collision-less fluid with phase space distribution
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conservation of fluid mass | additional assumptions
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Maxwell-Boltzmann isothermal density

f(v) ~ e v /2 n o~ =2

Ostriker, Peebles, and Yahil (1974); Bahcall and Soneira (1980); Caldwell and Ostriker (1981); Drukier, Freese, and Spergel (1986)
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The Local Milky Way’s Family Tree

Quiet Merger History

QO

v Milky Way

present
day
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Galactic Cannibalism & Dark Matter

Unveiling the Milky Way’s Past with Gaia

Putting Machine Learning to Use
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Simulated Galaxy Formation

Stellar Structure Evolution in the FIRE Simulation

Hopkins et al. (2015)

Video by Shea Garisson-Kimmel,
http:/fwww tapir.calteeh edn/ ~sheagl/firemovies html
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Simulated Galaxy Formation

Stellar Structure Evolution in the FIRE Simulation

Hopkins et al. (2015)

Video by Shea Garisson-K
Ite

=Kimmel,
http:/Swww tapieealtech edu/ <sheagle/firemovies hitml
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The Very Old Halo

As proto-Milky Way forms, its potential varies significantly with time

»

-

This redistributes energy of dark matter and stars from early mergers,
mixing them in phase space
dE 0P

dt ~ Ot
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The Very Old Halo

Oldest stars and dark matter in a galaxy share similar kinematics today

Herzog-Arbeitman, ML, Madau, and Necib, PRL (2018)
Herzog-Arbeitman, ML, and Necib, JCAP (2018)

Present-day velocities of stars and dark matter from oldest mergers in FIRE galaxy
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Necib, ML, Garisson-Kimmel, et al. [1810.12301]
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Younger Mergers

Once proto-galaxy in place, energy of tidal debris is conserved during merger

Streams of dark matter and stars created as a satellite falls in

satellite galaxy

*

tidal stream
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Tidal Streams

Differences in spatial distributions lead to offsets in stellar and dark matter
velocity distributions
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Necib, ML, Garrison-Kimmel, et al. [1810.12301]
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Younger Mergers

After many orbits, the spatial coherence of tidal debris is lost

Velocity features remain

satellite galaxy

debris ﬂy

Pirsa: 19090021 Page 13/37




Debris Flow in Simulations

Kinematic features in stars trace underlying dark matter substructure

Present-day distributions of stars and dark matter from a recent merger in FIRE galaxy
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Necib, ML, Garisson-Kimmel, et al. [1810.12301]
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Debris Flow in Simulations

Kinematic features in stars trace underlying dark matter substructure

Present-day distributions of stars and dark matter from a recent merger in FIRE galaxy
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Necib, ML, Garisson-Kimmel, et al. [1810.12301]
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Debris Flow in Simulations

Kinematic features in stars trace underlying dark matter substructure

Present-day distributions of stars and dark matter from a recent merger in FIRE galaxy
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Necib, ML, Garisson-Kimmel, et al. [1810.12301]
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Mergers that build up the Milky Way leave their imprint in
a wealth of spatial and velocity structures

Use stars as visible tracers for the dark matter halo that
was built up from luminous galaxies

NOTE: Stars do not trace any additional dark matter that may originate from non-luminous
galaxies. Separate techniques are needed to map this component.
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The Gaia Mission

Gaia Collaboration (2018)

Gaia is the follow-up astrometric survey to the Hipparcos mission (1989-1993)

Launched December 2013; second data release April 2018

Provides measurements for over a billion stars, ~1% of the Milky Way's stars
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Milky Way Archaeology

Fossil Shape
Fossil Environment

Radioactive Dating
|

Stellar position
Stellar velocity
Chemical abundance
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Chemical Abundance

The average stellar metallicity of a galaxy is correlated with its mass

Stars with similar chemical abundance can be linked to a parent galaxy
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Kirby et al. (2013)
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Accreted Stars

Accreted stars are typically older than those born in the Milky Way disk

Their velocity and spatial distributions also differ from disk stars

accreted Ak accreted

=200 =100 0 100 200

Vg [km/s]

Johnston et al. (1996), Helmi & White (1999), Bullock et al. (2001), Harding et al. (2001)
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Gaia Enceladus

Single merger dragged in the majority of the local accreted stars

Belokurov et al. (2018); Helmi et al. (2018)

Video Credit: H. H. Koppelman, A. Villalobos, A. Helmi (University of Groningen)
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SDSS-Gaia Cross Match
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Necib, ML, and Belokurov [1807.02519]
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SDSS-Gaia Cross Match
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The Local Neighborhood

Necib, ML, and Belokurov [1807.02519]

Halo Enceladus
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(Not including contribution from non-luminous galaxies)
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Sanderson et al, [1806.10564)
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Training the Network

FIRE m12i Galaxy

Train network on
fraction of stars here

(using 5D kinematics as
inputs)

Test network on
. . remaining stars here

10 kpc : It works...
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Training the Network

FIRE m12i Galaxy

Train network on
stars here

Test network on
stars here
It works...

10 kpe
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Training the Network

FIRE m12i Galaxy FIRE m12f Galaxy

10 kpe Train network on 10 kpe . Test network on

L —— D ———

stars here stars here

Transfer training is important: Retrain last layer of network on new galaxy
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Training the Network

Network successfully recovers distributions for new galaxy,
even when merger history is distinct from galaxy it was trained on

B. Ostdiek, L. Necib, T.

Cohen, M. Freytsis, ML, et al. [1907.06652

network trained on a galaxy with
distributions shown in blue

network prediction for new galaxy

shown in dotted black

truth distributions for new galaxy
shown in orange
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Training the Network

FIRE m12i Galaxy Milky Way Galaxy
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Gaia DR2 Accreted Star Catalog

We built the first catalog of accreted stars in Gaia DR2

B. Ostdiek, L. Necib, T. Cohen, M. Freytsis, ML, et al. [1907.06652

With this catalog, we find evidence for Enceladus near the Solar
position, as well as a vast new stellar stream

Gaia stars labeled as accreted with high confidence
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L. Necib, B. Ostdiek, ML, T. Cohen, et al. [1907.07190, 19007.07681]
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The Nyx Stream

~500 stars with coherent velocities passing near the Sun

Nyx stars rotate more slowly than disk stars and are on more eccentric orbits

Nyx Star Motjon

L. Necib, B. Ostdiek, ML, T. Cohen, et al, [1907.07190, 1907.07681]
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The Nyx Stream

Nyx stream can be explained as the tidal debris of a massive
dwarf galaxy disrupted in the Milky Way's disk

May also be due to perturbations of Milky Way disk stars from
bar or spiral arms, but these explanations do not fit all pieces of evidence

Further spectroscopic observations of Nyx stars will be crucial
for confirming its accreted origin

Pirsa: 19090021 Page 35/37




The Nyx Stream

Nyx stream can be explained as the tidal debris of a massive
dwarf galaxy disrupted in the Milky Way's disk

|

could be associated with a rotating disk of dark matter

Read et al. [0803.2714]; Read et al. [0902.0009]; Purcell et al. [0906.5348]

May also be due to perturbations of Milky Way disk stars from
bar or spiral arms, but these explanations do not fit all pieces of evidence

Further spectroscopic observations of Nyx stars will be crucial
for confirming its accreted origin
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Local Dark Matter

Luminous Satellite Non-Luminous Satellite
Galaxies Galaxies
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