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Abstract: | will introduce our recent proposal that the state of the universe does *not* spontaneously violate CPT. Instead, the universe after the big
bang is the CPT image of the universe before it, both classically and quantum mechanically. The pre- and post-bang epochs comprise a
universe/anti-universe pair, emerging from nothing directly into a hot, radiation-dominated era. CPT symmetry selects the QFT vacuum state on
such a spacetime, providing a new interpretation of the cosmological baryon asymmetry, as well as a particularly economical explanation for the
cosmological dark matter. Requiring only the standard three-generation model of particle physics (with right-handed neutrinos), a Z_2 symmetry
suffices to render one of the right-handed neutrinos stable. We calculate its abundance from first principles: matching the observed dark matter
density requiresits massto be 4.8 x 10{ 8} GeV. Several other testable predictions immediately follow: e.g. (i) the lightest neutrino is massless; (ii)
neutrinoless double beta decay occurs at a specific rate; and (iii) there are no primordial long-wavelength gravitational waves. The proposal aso has
interesting things to say about the strong CP problem, the observed electrodynamic arrow of time, cosmological boundary conditions, and the
wave-function of the universe. (Based on arXiv:1803.08928, arXiv:1803.08930, and forthcoming work.)
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Perimeter Institute
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Like Hawking Radiation
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One stable neutrino: Zio symmetry :
3/2
C' =0.00347

mdlrn) 4 . 8 >< 1 O Ge ~ Upgoing ANITA events as evidence of the CPT symmetric universe

Luls A ;'\lu‘lmulmuu,""‘ ' Vernon Hu.l'm-l.’ John G. Learned,” Danny Marfatia,* and Thomas J. Weiler®
' Department of Physics & Astronomy, Lehman College, City Universily of New York, NY 10468, [USA
".'Jq.:mhm nt af Plysies, Graduate Center, Cily Universily r.‘f New York, NY 100186, /
‘f.:'(umfm.r.m‘ af Astrophysics, American Museun of Natural Histary, NY 10024, USA
Y Departiment of Physics, University of Wisconsin, Madison, WI 54706, U/SA
Y Department of Physics 8 Astronomy, University of Howaii al Manoa, Honolulu, HI 96822, USA
" Department of Physics & Astronomy, Vanderbill University, Nashville TN 37235, USA
(Dated: April 1, 2018)

L ] 1
FiAn? | ,
FAVAWLWA Y] " - We explain the two upgoing ultra-high energy shower events observed by ANITA as arising from the

decay In the Earth's core of the quasi-stable dark matter eandidate in the CPT symmetric unlverse
Fhe dark matter particlo is o 480 PeV orvight-handed neatrine that decays into a Higgs and o light
Majorana neutrino, The latter interacts in tho Earth's erose to produce a7 lepton that in turn
initinte an atmosphoric upgoing shower,

The three balloon flights of the ANITA experiment with the non-observation of similar events at cosmic ray
have resulted in the observation of two unusunl upgo fueilities and leeCube
ing showers with energies of (GO0 4 400) PeV [1] and Cosmie ray facilities have seen downpgoing shower
["’““.:}:;:‘1) PeV [2]. The energy estimates are made un events with energles up to ~ 10% PeV, but have not
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Prediction: one neutrino is massless

Y m, =.06eV (NH) or .12¢V (IH)
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(Brinckmann et al, arXiv:1808.05955)
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Prediction: one neutrino is massless

Y m, =.06eV (NH) or .12¢V (IH) OvBB decay:
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(Brinckmann et al, arXiv:1808.05955) (Dell’Oro et al, arXiv:1601.07512)
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AdS Boundary Conditions (as rephrased by Hawking ‘83)
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AdS Boundary Conditions (as rephrased by Hawking ‘83)

boundary conditions have been discussed by Breiten-
lohner and Freedman {6]. They formulated two sets
of reflective boundary conditions which can be ex-
pressed as

2 AAYBB’ LUy o =3pA'B L (8)

In the case of spin zero, the boundary conditions were

‘p=i6, tAA’VAA'(p=¥[BB'VBB'(E. (9)
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AdS Boundary Conditions (as rephrased by Hawking ‘83)

boundary conditions have been discussed by Breiten-
lohner and Freedman {6]. They formulated two sets
of reflective boundary conditions which can be ex-
pressed as

zstAA'tBB'mILL’(pABmL =+pA'B'...L" (8)
In the case of spin zero, the boundary conditions were

‘p=i6, tAA’VAA;‘p=¥[BB'VBBu;, (9)

When applied to the Bang, correspond to our CPT condition!
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e Other predictions:
— No primordial tensor perturbations (GWs)
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 Work in progress:
— Homogeneity and isotropy
— Primordial scalar power spectrum from conformal anomaly
— Electrodynamic arrow of time
— Boundary conditions for guantum cosmology
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* Thank you!
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