Title: CPT-Symmetric Universe

Speakers: Latham Boyle

Collection: Cosmological Frontiers in Fundamental Physics 2019

Date: September 03, 2019 - 9:30 AM

URL: http://pirsa.org/19090016

Abstract: I will introduce our recent proposal that the state of the universe does *not* spontaneously violate CPT. Instead, the universe after the big bang is the CPT image of the universe before it, both classically and quantum mechanically. The pre- and post-bang epochs comprise a universe/anti-universe pair, emerging from nothing directly into a hot, radiation-dominated era. CPT symmetry selects the QFT vacuum state on such a spacetime, providing a new interpretation of the cosmological baryon asymmetry, as well as a particularly economical explanation for the cosmological dark matter. Requiring only the standard three-generation model of particle physics (with right-handed neutrinos), a Z_2 symmetry suffices to render one of the right-handed neutrinos stable. We calculate its abundance from first principles: matching the observed dark matter density requires its mass to be 4.8 x 10^{8} GeV. Several other testable predictions immediately follow: e.g. (i) the lightest neutrino is massless; (ii) neutrinoless double beta decay occurs at a specific rate; and (iii) there are no primordial long-wavelength gravitational waves. The proposal also has interesting things to say about the strong CP problem, the observed electrodynamic arrow of time, cosmological boundary conditions, and the wave-function of the universe. (Based on arXiv:1803.08928, arXiv:1803.08930, and forthcoming work.)

Pirsa: 19090016 Page 1/36

Pirsa: 19090016 Page 2/36

Pirsa: 19090016 Page 3/36

Pirsa: 19090016 Page 4/36

Pirsa: 19090016 Page 5/36

 $g_{\mu\nu} = a^2(\tau)\eta_{\mu\nu}$

new isometry:

$$au o - au$$

preferred vacuum:

$$|0_{CPT}\rangle$$

$$\psi(x) = \sum_{h} \int \frac{d^3 \mathbf{p}}{(2\pi)^{3/2}} [a(\mathbf{p}, h)\psi(\mathbf{p}, h, x) + b^{\dagger}(\mathbf{p}, h)\psi^c(\mathbf{p}, h, x)]$$

Pirsa: 19090016

$$\psi(x) = \sum_{h} \int \frac{d^3 \mathbf{p}}{(2\pi)^{3/2}} [a(\mathbf{p}, h)\psi(\mathbf{p}, h, x) + b^{\dagger}(\mathbf{p}, h)\psi^c(\mathbf{p}, h, x)]$$

Pirsa: 19090016 Page 11/36

$$\psi(x) = \sum_{h} \int \frac{d^3 \mathbf{p}}{(2\pi)^{3/2}} [a(\mathbf{p}, h)\psi(\mathbf{p}, h, x) + b^{\dagger}(\mathbf{p}, h)\psi^c(\mathbf{p}, h, x)]$$

$$\psi_+(\mathbf{p},h,x)$$

$$a_+, b_+ \Rightarrow |0_+\rangle$$

$$\psi_{-}(\mathbf{p},h,x)$$

$$a_-, b_- \Rightarrow |0_-\rangle$$

Pirsa: 19090016

$$\psi(x) = \sum_h \int \frac{d^3\mathbf{p}}{(2\pi)^{3/2}} [a(\mathbf{p}, h)\psi(\mathbf{p}, h, x) + b^{\dagger}(\mathbf{p}, h)\psi^c(\mathbf{p}, h, x)]$$

$$\psi_+(\mathbf{p},h,x)$$

$$a_+, b_+ \Rightarrow |0_+\rangle$$

$$\psi_0(\mathbf{p},h,x)$$

$$a_0, b_0 \Rightarrow |0_0\rangle$$

$$\psi_{-}(\mathbf{p},h,x)$$

$$a_-, b_- \Rightarrow |0_-\rangle$$

$$\psi(x) = \sum_h \int \frac{d^3\mathbf{p}}{(2\pi)^{3/2}} [a(\mathbf{p}, h)\psi(\mathbf{p}, h, x) + b^{\dagger}(\mathbf{p}, h)\psi^c(\mathbf{p}, h, x)]$$

$$\psi_+(\mathbf{p},h,x)$$

$$a_+, b_+ \Rightarrow |0_+\rangle$$

$$a_0, b_0 \Rightarrow |0_0\rangle$$

$$a_-, b_- \Rightarrow |0_-\rangle$$

Pirsa: 19090016

$$\psi_0(\mathbf{p}, h, x) = \alpha(\mathbf{p})\psi_+(\mathbf{p}, h, x) + \beta(\mathbf{p})\psi_+^c(-\mathbf{p}, h, x)$$

$$\langle 0_0 | a_+^{\dagger}(\mathbf{p}, h) a_+(\mathbf{p}, h) | 0_0 \rangle = |\beta(\mathbf{p})|^2 = e^{-\pi p^2 \frac{M_{\text{pl}}}{m_{\text{dm}}}} \sqrt{\frac{3}{\rho_{\text{rad}}}}$$

Pirsa: 19090016 Page 15/36

$$\psi_0(\mathbf{p}, h, x) = \alpha(\mathbf{p})\psi_+(\mathbf{p}, h, x) + \beta(\mathbf{p})\psi_+^c(-\mathbf{p}, h, x)$$

$$\langle 0_0 | a_+^{\dagger}(\mathbf{p}, h) a_+(\mathbf{p}, h) | 0_0 \rangle = |\beta(\mathbf{p})|^2 = e^{-\pi p^2 \frac{M_{\text{pl}}}{m_{\text{dm}}}} \sqrt{\frac{3}{\rho_{\text{rad}}}}$$

Like Hawking Radiation

Pirsa: 19090016

Pirsa: 19090016 Page 17/36

$$G_{\mu}, W_{\mu}, B_{\mu}, h$$

Pirsa: 19090016 Page 18/36

$$G_{\mu}, W_{\mu}, B_{\mu}, h$$

 $egin{aligned} d_L, u_L, d_R, u_R \ d_L, u_L, d_R, u_R \ d_L, u_L, d_R, u_R \end{aligned}$

Pirsa: 19090016 Page 19/36

$$G_{\mu}, W_{\mu}, B_{\mu}, h$$

 $egin{aligned} d_L, u_L, d_R, u_R \ d_L, u_L, d_R, u_R \ d_L, u_L, d_R, u_R \ e_L,
u_L, e_R,
u_R \end{aligned}$

Pirsa: 19090016 Page 20/36

$$G_{\mu}, W_{\mu}, B_{\mu}, h$$

$$d_L, u_L, d_R, u_R$$
 d_L, u_L, d_R, u_R
 d_L, u_L, d_R, u_R
 e_L, ν_L, e_R, ν_R
 $x 3$

Pirsa: 19090016 Page 21/36

dark matter

One stable neutrino: $\nu_R^{(1)}$ (\mathbb{Z}_2 symmetry: $\nu_R^{(1)} \to -\nu_R^{(1)}$)

$$\frac{n_{
m dm}}{s_{
m rad}} = C \left(\frac{m_{dm}}{M_{pl}}\right)^{3/2} \qquad (C = 0.003476...)$$

Pirsa: 19090016 Page 22/36

dark matter

One stable neutrino: $\nu_R^{(1)}$ (\mathbb{Z}_2 symmetry: $\nu_R^{(1)} \to -\nu_R^{(1)}$)

$$\frac{n_{\rm dm}}{s_{\rm rad}} = C \left(\frac{m_{dm}}{M_{pl}}\right)^{3/2} \qquad (C = 0.003476...)$$

$$m_{dm} = 4.8 \times 10^8 \text{GeV}$$

Pirsa: 19090016 Page 23/36

dark matter

$$\nu_B^{(1)}$$

One stable neutrino:
$$\nu_R^{(1)}$$
 (\mathbb{Z}_2 symmetry: $\nu_R^{(1)} \to -\nu_R^{(1)}$

$$rac{n_{
m dm}}{s_{
m rad}} = C \left(rac{m_{dm}}{M_{pl}}
ight)^{3/2}$$

$$(C = 0.003476...)$$

 $m_{dm} = 4.8 \times 10^8 \text{GeV}$

detection?

Upgoing ANITA events as evidence of the CPT symmetric universe

Luis A. Anchordoqui, 1, 2, 3 Vernon Barger, 4 John G. Learned, 5 Danny Marfatia, 5 and Thomas J. Weiler 6 Department of Physics & Astronomy, Lehman College, City University of New York, NY 10468, USA ² Department of Physics, Graduate Center, City University of New York, NY 10016, USA Department of Astrophysics, American Museum of Natural History, NY 10024, USA

⁴Department of Physics, University of Wisconsin, Madison, WI 53706, USA Department of Physics & Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822, USA ⁶ Department of Physics & Astronomy, Vanderbilt University, Nashville TN 37235, USA (Dated: April 1, 2018)

We explain the two upgoing ultra-high energy shower events observed by ANITA as arising from the decay in the Earth's core of the quasi-stable dark matter candidate in the CPT symmetric universe. The dark matter particle is a 480 PeV right-handed neutrino that decays into a Higgs and a light Majorana neutrino. The latter interacts in the Earth's crust to produce a τ lepton that in turn initiate an atmospheric upgoing shower.

The three balloon flights of the ANITA experiment have resulted in the observation of two unusual upgoing showers with energies of (600 ± 400) PeV \square and (560^{+300}_{-200}) PeV [2]. The energy estimates are made unwith the non-observation of similar events at cosmic ray facilities and IceCube.

Cosmic ray facilities have seen downgoing shower events with energies up to $\sim 10^5$ PeV, but have not

Pirsa: 19090016 Page 24/36

Pirsa: 19090016 Page 25/36

 $\sum m_v \approx .06eV(NH)$ or .12eV(IH)

(Brinckmann et al, arXiv:1808.05955)

Pirsa: 19090016 Page 26/36

 $\sum m_{\rm v} \approx .06 eV(NH)$ or .12 eV(IH)

 $0\nu\beta\beta$ decay:

(Brinckmann et al, arXiv:1808.05955)

Pirsa: 19090016 Page 27/36

 $\sum m_v \approx .06eV(NH)$ or .12eV(IH)

0
uetaeta decay:

(Brinckmann et al, arXiv:1808.05955)

(Dell'Oro et al, arXiv:1601.07512)

Pirsa: 19090016 Page 28/36

AdS Boundary Conditions (as rephrased by Hawking '83)

Pirsa: 19090016 Page 29/36

AdS Boundary Conditions (as rephrased by Hawking '83)

boundary conditions have been discussed by Breitenlohner and Freedman [6]. They formulated two sets of reflective boundary conditions which can be expressed as

$$2^{s}t^{AA'}t^{BB'}...t^{LL'}\varphi_{AB...L} = \pm \overline{\varphi}^{A'B'...L'}.$$
 (8)

In the case of spin zero, the boundary conditions were

$$\varphi = \pm \overline{\varphi} , \qquad t^{AA'} \nabla_{AA'} \varphi = \mp t^{BB'} \nabla_{BB'} \overline{\varphi} . \tag{9}$$

Pirsa: 19090016 Page 30/36

AdS Boundary Conditions (as rephrased by Hawking '83)

boundary conditions have been discussed by Breitenlohner and Freedman [6]. They formulated two sets of reflective boundary conditions which can be expressed as

$$2^{s}t^{AA'}t^{BB'}...t^{LL'}\varphi_{AB...L} = \pm \overline{\varphi}^{A'B'...L'}.$$
 (8)

In the case of spin zero, the boundary conditions were

$$\varphi = \pm \overline{\varphi} , \qquad t^{AA'} \nabla_{AA'} \varphi = \mp t^{BB'} \nabla_{BB'} \overline{\varphi} . \tag{9}$$

When applied to the Bang, correspond to our CPT condition!

Pirsa: 19090016 Page 31/36

No primordial tensor perturbations (GWs)

Pirsa: 19090016 Page 32/36

• Other predictions:

- No primordial tensor perturbations (GWs)
- No primordial vector perturbations (vorticity)

Pirsa: 19090016 Page 33/36

• Other predictions:

- No primordial tensor perturbations (GWs)
- No primordial vector perturbations (vorticity)
- No decaying-mode scalar perturbations (correct CMB peaks)

Pirsa: 19090016 Page 34/36

Other predictions:

- No primordial tensor perturbations (GWs)
- No primordial vector perturbations (vorticity)
- No decaying-mode scalar perturbations (correct CMB peaks)

Work in progress:

- Homogeneity and isotropy
- Primordial scalar power spectrum from conformal anomaly
- Electrodynamic arrow of time
- Boundary conditions for quantum cosmology

Pirsa: 19090016 Page 35/36

Other predictions:

- No primordial tensor perturbations (GWs)
- No primordial vector perturbations (vorticity)
- No decaying-mode scalar perturbations (correct CMB peaks)

Work in progress:

- Homogeneity and isotropy
- Primordial scalar power spectrum from conformal anomaly
- Electrodynamic arrow of time
- Boundary conditions for quantum cosmology

Thank you!

Pirsa: 19090016 Page 36/36