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Abstract: In quantum error correcting codes, thereis adistinction
between coherent and incoherent noise. Coherent noise can cause the
average infidelity to accumulate quadratically when afixed channel is
applied many timesin succession, rather than linearly asin the case

of incoherent noise. | will present a proof that unitary single qubit
noise in the 2D toric code with minimum weight decoding is mapped to
less coherent logical noise, and as the code size grows, the coherence
of the logical noise channel is suppressed. In the process, | will
describe how to characterize the coherence of noise using either the
growth of infidelity or the relation between the diamond distance from
identity and the average infidelity. | will explain how coherencein

the noise on physical qubitsistransformed by error correction in
stabilizer codes. Then, | will sketch the proof that coherenceis
suppressed for the 2D toric code. The result holds even when the
single qubit unitary rotation are allowed to have arbitrary directions
and angles, so long as the angles are below athreshold, and even when
the rotations are correlated. Joint work with John Preskill.
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Growth of Infidelity
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* The average infidelity: r(N)=1- [ Tr(pN(p))dp

» After m applications of a given noise channel, the average
infidelity is given by
Depolarizing;: r(D"™) = mr + higher order

Unitary:  #(Unit™) = m?*r + higher order
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Diamond Distance from Identity

* The diamond distance from identity is defined as a max over
pure states in a doubled space:

[N —id|, = max, [((N —id) @ id) (p)|,

* The diamond distance from identity is related to the average
infidelity differently for coherent and incoherent channels
Depolarizing: Dy —id|[, — ocr
Unitary:  ||Unity — idHo X \/T
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The Toric Code

 Qubits on edges of 2D square lattice with periodic boundary conditions
« Stabilizer generators are stars and plaquettes
 Logical operators are strings
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Why the Toric Code?

* Topological codes have nice properties: efficient and good
decoding, high threshold, ready-made infinite families of codes
that are easy to analyze

2D is the simplest case and is most suitable to physical
realization

* We expect that all stabilizer codes will respond in a similar way
to coherent noise, but the proof is difficult so we chose the
simplest example that we expect to be representative.
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Coherence in Channel Representations

* Pauli transfer matrix/Liouville representation
N(p) = N (53 pjo’ ) = 52, Nijoso
{o*} is a basis of n qubit Pauli operators
* ¥ matrix/process matrix representation:
N(p) = 217 Xi,jO' po’

(O'ipO'j) = Xi,j
* Incoherent components are diagonal in both representations
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Error Correction

« We will analyze one round of error correction

* We average over syndrome measurements to produce the error
correction channel

* We assume perfect syndrome extraction. The errors are all
bundled up into the noise channel N

* The logical noise channel is given by

~

N = Decode o N o Encode
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Logical Noise Channels

N = Decode o N o Encode

« Each component of the logical noise channel is a sum of terms
from the physical noise channel

* In the y matrix representation we can write:

Yolcs atri r ~71 Physical atrix
L(J}:,l( 11]{ matrix (La[)Lb) — ZS . ](ESL(IslpSJ LbES) ysical ¥y matrix

component components
Ea Logical a operator on encoded qubits FE,  Standard error for syndrome s
P State of encoded qubits L, Logical a on physical qubits
P State of physical qubits S;  Stabilizer operator i
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Repetition Code Calculation 1

 Consider an n qubit bit flip code where n is odd

n qubits
( > ( ) Check operators {Z; ® Z; 11}
Q Q O Logical X operator L; = @, X;

* Let our noise model consist of single qubit rotations about the X
axis

U=cosOI+isinf X N(p) = U®npUi®en
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Repetition Code Calculation 2

« Compute the coherent logical channel component X1,0

)21,0 — Zs (EstpEs)

s 1S a syndron‘m

L, is the logical X operator

» Each term in the sum corresponds to a partitioning of the logical
operator into two:

(@®O®O)p(CO®O®)
(@X®O®)p(OOO®O)
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Repetition Code Calculation 3

« Each syndrome and correction is a set of fewer than half of the n
qubits. Together with the phases that come from the factors of i sin 6
in the unitary, we have

(n=1)/2 ,
(Eaﬁ) = E (n) (—1)*j('i sinf cos )"
: J

§=0

n—1
— n—1
2

 Notice that the sum is alternating
 Cancellations are crucial to the suppression of coherence

i(—1)"*!(sin# cos 0)"
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Repetition Code Calculation 4

* Now let us compute the incoherent logical channel component

)E-l,l — ES (EsLiz:pL:z:E,s)

» The same logical operator appears on both sides of p.

(n—1)/2 . | |
)E] 1 — Z ( ) (Sil] 9)27‘1,—2.7 (COS 9)2}

j=0

n : , N
= (n—l) (sin@)" ! (cos @)1 + ..

2
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Repetition Code Calculation 5

« We have computed exactly the coherent and incoherent
components of the logical noise channel. Now compare them:

= .\ i(—=1D)"TltcosO (7 ~F
(Llp) o 2sin 0 (Llle)

» As a function of the code size n, the two components are related
by a constant. This allows us to prove the following statement
about the growth of infidelity:

r(N™) < mr(N) + O(r(N)?)m?
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Back the Toric Code

Theorem: C01151de1 a toric code of size L with minimum weight decoding
and }{)erlodlc oundary condltlon and a noise model consisting of single

1 rotations b %r an angle 6 < 0.19 radians about the X or Z axis on every
qu bit. Then, the following bounds hold for this noise model as well as an
single qublt unitary noise model with arbitrary rotation angles that has the
same logical noise strength.

Dy (N —id)? < er? for a constant is given by ¢ o ((q11119)2)

We can also consider the growth of infidelity as we app f/ the loglcal noise
channel many times. Let r,,,be the infidelity after m applications, then

l .
Tm < mr(l+ ; ds J‘r{‘) ——5mr)

Similar statements continue to hold when we have correlated unitary noise.
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Proof sketch

* The basic plan will be to apply something like the repetition
code calculation for each logical string.

* For each string, we will perform a restricted | | | ",
sum over stabilizers RIS
* The disconnected parts of the syndrome R

will be factored out R A

» We will compare coherent and incoherent .+ b .+ ¢
contributions for each string i

An X type logical string in the toric code
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The First Difficulty

 Say we just consider logical noise components with only one
nontrivial logical operator:

ia,,O — (f/aﬁ)
* The sum over restricted syndromes for the connected logical

string is not as simple as in the repetition code: =~
Lower weight uncorrectable error _ ! X 1 A 1 X t X t . 1 i ﬂ—i ‘ ‘ ?
Higher weight correctable error * ? ? ? ' " s '
. [ .I . . 'r_ 3 . . .
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Path Counting

 Path counting has been used many times to prove thresholds for
stochastic noise in the toric code.

* We can bound the number of logical strings of a given length in
the square lattice.

« However, we have to keep track of phases. We are adding many
terms with different phases and so a bound does not help

« We also have an asymptotic form for the number when the
length is well above minimum

Co ~ W2 n~264 a=1/2
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Truncation

* The main tool in the proof is to use the path counting expression
to truncate the length of logical strings we consider.

» If the angle of rotation 6 is below 0.19, then we can neglect the
strings longer than L + 2k for some constant k

* The error is exponentially small in k

* The remaining short strings are easier to analyze. In particular,
they resolve the first difficulty.
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The First Difficulty

 Say we just consider logical noise components with only one
nontrivial logical operator:

irL,O . (Eaﬁ)
* The sum over restricted syndromes for the connected logical

string is not as simple as in the repetition code: =~
Lower weight uncorrectable error _ 1 A 1 A 1 X t X t . 1 i ﬂ—i \ ‘ ?
Higher weight correctable error ? ? ? ’ ? " . '
. [ 'I . . 'r_ 3 . . .
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A Second Difficulty

* The incoherent components of the logical noise channel now

involve physical coherent terms that become incoherent under
error correction:

(i()ﬁin) — Zs,fi,j (E-‘3L0»S’ipstaE3)

L, Logical a operator on encoded qubits [/,  Standard error for syndromes [, Logical a on physical qubits

p  State of encoded qubits £  State of physical qubits S, Stabilizer operator i

» Many of the terms on the right are off-diagonal.
* We must sum over all stabilizer operators on both left and right
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Other Difficulties

 Shape of logical strings

* When we compare coherent and incoherent terms for many
different strings, we don’t want to double count

 Factoring disconnected piece, new exceptional terms
 Physical Y errors

* Y logical errors

* Coherent }, ;, components with both a and b nontrivial
* Bounding unitarity in terms of the y matrix
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irsa:

Arbitrary Angles

* So far we have considered a noise model in which every qubit is
rotated by the same unitary.

* We can show that this maximizes the coherence of the logical
noise channel

» For inhomogeneous rotation axes and angles, among the class of
noise models with the same logical infidelity, the logical
coherence is bounded by our calculation with all angles equal

* Proved using a schematic description of logical noise
components as functions of the individual qubit angles.
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Correlations

* We can allow for correlations between qubits, so that we no
longer have one qubit unitary rotations but entangled
multiqubit rotations

* We use a Hamiltonian to model the correlations that was simple
but not entirely physical

H=3%,hmXp+3,  haXiX;

* The same two body term couples every pair of qubits along a
logical string.

* Coherence is still suppressed in this case
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Results

Theorem: C01151de1 a toric code of size L with minimum weight decoding
and Eerlodlc oundary condltlon and a noise model consisting of single

1 rotations b %r an angle 6 < 0.19 radians about the X or Z axis on every
qu bit. Then, the following bounds hold for this noise model as well as an
single qublt unitary noise model with arbitrary rotation angles that has the
same logical noise str ength

9 2 af-o "N ¢ 3 a1 ¢ Q@ "1 ) ? l
Dy(N —id)? < cr? for a constant is given by ¢ o ((qinf))z)

We can also consider the growth of infidelity as we app f/ the loglcal noise
channel many times. Let r;,,,be the infidelity after m applications, then

, N dr -
rm < mr(l+ Q(dn—l—l)sinf)?n?)

Similar statements continue to hold when we have correlated unitary noise.
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Future Work

 For now, our proof applies only to the toric code with minimum
weight decoding. We expect that a similar theorem holds for any
stabilizer code and reasonable decoding scheme.

* Numerics are probably needed to test how tight our bound is on
the logical coherence for a particular code size.

 Can we find a more physical model for correlations that is
tractable?
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