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Abstract: In this talk | will report on recent progress in building QFT models on causal sets. The framework I'm using is that of perturbative
algebraic quantum field theory (pAQFT). It was developed for rigorous study of perturbative QFT in the continuum, but can aso be applied in the
situation where spacetime is replaced by a discrete structure. Causality plays akey rolein pAQFT, so it is natural to apply it to causets. Construction
of models in this framework is purely algebraic and one does not need to specify a state or a Hilbert space representation until the final step, in
which correlation functions are computed.
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Based on joint work with Edmund Dable-Heath, Christopher J. Fewster and
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o

@ Classical theory
o Free quantum theory
@ Interaction
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Algebraic QFT and its generalizations
Scalar fields on causal sets

. _quantum field theory

@ A convenient framework to investigate conceptual problems in
QFT is the Algebraic Quantum Field Theory.

o It started as the axiomatic framework of Haag-Kastler: a model is
defined by associating to each region O of Minkowski spacetime
an algebra 2A(Q) of observables that can be measured in O.

@ The physical notion of subsystems is realized by the condition of
isotony, i.e.: Q) C Or = A(O1) C A(O3). We obtain a net of

algebras.
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Algebraic QFT and its generalizations

¢ QFT on curved spacetimes

Algebraic approach generalizes also to curved spacetimes. Key
feature: construction of the algebra ot observables 1s separated
from the choice of a state.

The corresponding generalization of AQFT is called locally
covariant quantum field theory [Hollands-Wald 01,
Brunetti-Fredenhagen-Verch 01, Fewster-Verch 12....].

For construction of models it 1s convenient to use perturbative
methods: pAQFT [Epstein-Glaser 73, Diitsch-Fredenhagen 00,
Brunetti-Fredenhagen 00, Brunetti-Diitsch-Fredenhagen 09, Hollands 08,
Fredenhagen-KR 11.,... ]
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Algebraic QFT and its generalizations
Scalar fields on causal sets

> QFT on causal sets

@ One can replace the smooth manifold with a discrete set of
points equipped with the causal order relation and the main i1deas
of pAQFT carry over.

@ This has been done in our recent work: Algebraic Classical and
Quantum Field Theory on Causal Sets, Edmund Dable-Heath,
Christopher J. Fewster, KR, Nick Woods, [arXiv:1908.01973].

o Let (C. <) be a discrete set of points C with a relation <:

XXy=xXz7 —= x=<X1z transitivity
x=Xvandy<xy — x =y, acvclicity
11(x,y)]| < o0, local finiteness
where
I(x.y)={z€C|x=<z=Xy}

and we write x < vifx < yand x # y.

Kasia Rejzner

Pirsa: 19080083 Page 6/32



Algebraic QFT and its generalizations
Scalar fields on causal sets

2

@ Classical theory
o Free quantum theory
@ Interaction
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Scalar fields on causal sets

i:r_.lput

A fixed causal set (C, <)

Scalar field configuration space &: choice of objects we want to
study in our theory, £ consists of maps ¢ : C — R,

For a finite causal set of cardinality N, £ = R,

Observables: F = C*>(&, C), 1.e. functionals on the
configuration space.

Free dynamics: a discretized retarded Green function E™ (ideally
coming from a discretization of some normally hyperbolic
operator).

[nteraction: we use a modification of the Lagrangian formalism
(fully covariant), where the choice of interaction 1s realized as
the choice of some V € F.
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5 _jerators in the continuum

Let M be a globally hyperbolic spacetime, and
EM) =C¥(M.R).

For the free scalar ficld the equation of motion is Py = 0, where

P = —(0O + m~) is (minus) the Klein-Gordon operator.

For globally hyperbolic M, P admits retarded and advanced
Green's operators E*, E~. They satisfy: P o E* = idp ).
:i: . — ] . \ /

E=o (P{D(M‘_}.) - ld'D(‘/\_.-,r) and

supp ( E*_ _\.'_ t M“|\ cJ"(y) supp £ (f)

) C{(x -
supp(E7) C {(x.yv) € M*|x € J(v)}.

. . : | supp/
Their difference 1s the Pauli-Jordan operator £ ¢

E=E" —E. —
supp E™ (f)
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yraic QFT and its generalizations

Scalar fields on causal sets

d Green operators |

We focus on finite causal sets (neglecting edge effects for the
moment) and study equations taking the form

P = Kf .

where £, ¢ € RY are the source and solution respectively.

The map K provides additional freedom to determine the way in
which a continuum source 1s discretized.

In agreement with [Aslanbeigi-Saravani-Sorkin 2014 ], we require P to
be a retarded operator, i.e. (P¢), is a linear combination of ¢,
with ¢ < p. Similarly for K.

We require both P and K to be real.

[n the natural labeling, P is lower triangular and its diagonal
entries are all nonvanishing. Consequently, P is invertible.

The retarded Green operator 1s then

Et=plk.
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18 eeneralizations

Scalar fields on causal sets

zed Green operators 11

@ We define the advanced Green operator to be
E- = (ENT,

and the Pauli-Jordan operator is the anti-symmetric matrix

E=E —E"=(ET) —E™.

@ As a specific example of P, we recall the discretized
d’Alembertian proposed in [Sorkin 09]:

I P =q
(Ps)pg = § —2.4,-2, p#q, n(p,q) = 1,2, 3 respectively

0, otherwise,
where n(p,q) = [I(¢.p)| — 1.
@ Another proposal (using some extra structure called “preferred
past™) can be found in our paper.
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rls bracket

@ We define the Poisson bracket of the free theory as

TR 3 ST

i=1 j=I

where we used the Euclidean inner product to raise one of the
indices in £/
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Scalar fields on causal sets

zed Green operators 11

@ We define the advanced Green operator to be
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and the Pauli-Jordan operator is the anti-symmetric matrix

E=E —Et=(ET) —ET.

@ As a specific example of P, we recall the discretized
d’Alembertian proposed in [Sorkin 09]:

I p=q
(Ps)pg = § —2.4,-2, p#q, n(p,q) =1,2,3 respectively

0, otherwise,
where n(p,q) = [I(¢.p)| — 1.
@ Another proposal (using some extra structure called “preferred
past™) can be found in our paper.
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ierls bracket

o We define the Poisson bracket of the tree theory as

(r.0h =3 Y 2

i=1 j=I

where we used the Euclidean inner product to raise one of the
indices in £/

@ We have shown that this agrees with the 1dea of Peierls to define
the canonical bracket as the difference between the retarded and
advanced response.
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18 eeneralizations

Scalar fields on causal sets

ind past inifinity

o Following [Sorkin 09], we introduce layers:

L-(x) ={yeC|y=<ux, nxy)

and dual layers using the reversed order:

L7 (x)={yeC|y>x n(yx)

@ The n-layer past infinity C,; 1s defined by

C, ={xeC|L; (x)=0,Yi>n}.
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Define the projection to future/past infinity as

(55),, — [, itxeC,

H - R
(). otherwise.

For a discretized d’ Alembertian that uses the data from n
layer-past, the edge effects in a finite causal set are taken into
account by using:

P = Kf -

where ¢ = S, ¢ 1s the projection of ¢ onto past infinity and the
source f vanishes in C.
For f = 0, we have the source-free equation with Cauchy data

¢ and the solutionis ¢ = E " ¢

The solution space is £, = ETE(C,)).
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yraic QFT and its generalizations

Scalar fields on causal sets

auchy evolution

A particularly simple situation occurs if the solutions are also in
bijection with data on tuture infinity.

In this case o™ = STE" £(c.) 18 an iso at 1 E(C) = E(CT),
called the Cauchy evolution.

For the existence of Cauchy evolution, we need in particular that
C”i have equal cardinality.

We can use the Cauchy evolution to compare the dynamics of the
theory on two causal sets C and C, provided we have
isomorphisms: «* : £(CF) — £(CH).

The relative Cauchy evolution 1s a linear isomorphism on the
solution space £¢ (C) defined by

rce(¢) = ET() Hat)"itSte,
In the continuum, rce allows one to characterize the dynamics
and reconstruct the stress-energy tensor.
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Scalar fields on causal sets

ng equations of motion

Let C be finite with |C| = N. Take V € F = C™>(&,C) and let A
be the coupling constant.

We work perturbatively, so the space of observables i1s now
extended to include formal power series in the coupling constant
A, L.e. it becomes F[[A]].

The interacting field equations are given by

Po+ AK(VID () = o

The interacting field equations linearized about ¢» € £, are
P + AKVE () =~
where V2 (¢) is an N x N matrix with components

(V) (o) )i = V(o).
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Scalar fields on causal sets

g Poisson bracket

The interacting Poisson bracket is given by
(G.H},, = GExv(0)'H ;.

. Y — g (Y — (F (T . + (Y e
where Exy(¢) = Ey (&) — (E{,(¢))" . and E{, () is the
retarded Green function for the linearized field equations.

o Starting from £, we construct the interacting one using:

Efy =E*+ Y (-N'E" (VOEY)

n=|\

@ We introduce the retarded classical Moller map:
rav(¢) = ¢ — AE +yl) (rav(o)),

o which induces (ry\yF)(¢) = F o ryy(¢) on the observables.
@ Analogously to the continuum case, the Peierls bracket satisfies:

. 1. . .
{l ("},\\" ",\1..'{’,\\"1'~ ",\\"‘(-’} .
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18 eeneralizations

Scalar fields on causal sets

—Weyl x-product

@ Restrict to the subspace of F that consists of smooth functionals
F such that F" () = 0 forall n > N, p € £. Denote it by Fpol.

Define the Moyal-Weyl product as
FxG=moex™t(FgG)

where I, G € Fp,. m 1s the pointwise multiplication and for a
given N x N matrix K

De = K2 K.
k T { (~ . {\'(:‘) b

TO0Q; 00,

We obtain a non-commutative algebra 24 = (Fpor, ), which is
the analogue of the continuum oft-shell algebra.
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QFT and 1t reneralizations
Scalar fields on causal sets

2ssion: Commutation relations in continuum

Smeared fields: Let D(M) = C>°(M,R) and f.f" € D(M).

b ( /{ x)dpg(x), Py /f X)dyig(x)

o [bp, by = bpx by — by x by = ih (A f @f).

o Formally, we can consider ¢, = $(4,), where o, is the Dirac
delta supported at some x € M.
for M = M (Minkowski spacetime):
[Pox). Poy)s = A0.x:0,y) = 0.

[P0 i oyy)s = OA(0,x:0,y) = ihd(x —y), where dot
dumtu the time derivative.
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Scalar fields on causal sets

product

The Wick product 1s defined by

Fxpy G=moe™(F®aG),

(- : . o
where W = S £ + H 1s a complex hermitian matrix, interpreted

as the two-point function of a quasifree state on I,
Denote Ay = (]‘q]w,_ -*H)
We require W to have the following properties
E=21Im W,ie., H= Re H (recall that £ is real by definition).
W is a positive definite matrix, meaning that fTWf > 0, where /1
is the hermitian conjugate of f € CV.
ker W C ker E (a proxy for W solving the equations of motion)
Physically, passing from * to xg corresponds to normal-ordering
with respect to the quasitree state determined by W.
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Scalar fields on causal sets

@ In order to find a specific choice of W, we will follow the ideas
of [Johnston 09, Afshordi-Aslanbeigi-Sorkin 12] and take W as the
Sorkin-Johnston (SJ) two-point function.

Sorkin’s W is the unique N x N matrix satisfying the following
properties:

W — W = (E, where bar denotes the complex conjugation,

W >0,

WW = 0.

[t was shown by Sorkin that the unique W satisfying the axioms

L I .
above 1s given by W = = (iE + V —FE?), where the square root is

the unique positive semi-definite square root of the positive

semi-definite matrix (iE)* = (iE)(iE)T.
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Scalar fields on causal sets

The Feynman propagator 1s defined by
[
5

AF (EY +E7)+H.

where H 1s the symmetric part of the 2-point function.
@ We define the time-ordering map
h-
T = ¢2PaF
. . gl o > O2F
where Dk (F) = K'F ;; = <1\. 3-;-’;>
@ Formally it corresponds to the operator of convolution with the
oscillating Gaussian measure “with covariance ihA"™,

TF(Y:) t'(yl‘lzllill / F(\; — (I,.‘"T)) d/f.r'h.;ll“‘((‘fb) :

o Define the time-ordered product -7 on F|[h, A]| by:

FrG=T(T'F-T'G)
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Scalar fields on causal sets

matrix

@ More explicitly:

, R Y/
FrG = n'zoc'!?-ﬁ PaF(FRG) Z h—“‘?,‘i L (ab (QF)"”-j" Gj..j
n=>0 e
@ The formal S-matrix for the interaction V and coupling constant
A 1s now given by

OC

X . i \y /\n ,-u ’
S(AV) = ek > Vg
| R'n!

n=>0

@ For a functional F € F, the corresponding quantum interacting
field is given by Ryy(F), where R)y is the retarded quantum
Moller operator defined by

| ;o )
Ryv(F) = —ih—8(A\V) ™ %y S(AV + pF) T

H
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Scalar fields on causal sets

ng star product

@ We can also use the Moller operator to deform the free star
product and obtain the interacting one, using the formula:

Fxpim G = Ry V(R (F) %1 Ryv(G)) .

This way we obtain the interacting algebra
AN = (F[[h, N]], *4.0 ). Given a state w on the free algebra, we

can construct the state wipe on 2 }'}r using the pullback:

L?*-"inl(F) = wo RA\-"(F)

The n-point correlation function of smeared interacting fields 1s
given by:
Wint( Py, *int - - -Hint Pg,) = W(RA\V( Py, ) 1 - % Rav(Py,))

(R/\l-’((l)m) XH o kH R,\l-’((l)yu))((-)) -
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Scalar fields on causal sets

Thank you very much for your attention!
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