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Abstract: We study the quantum work associated with the nonequilibrium quench of an optical lattice as it evolves from initial Mott type states with
large potential barriers under the Sine-Gordon Hamiltonian that describes the dynamics of the system when the barriers are suddenly lowered. The
calculations are carried out by means of the Boundary Bethe Ansatz approach where the initial and final states of the quench are applied as boundary
states on the evolving system. We calculate exactly the Loschmidt amplitude, the fidelity and work distribution characterizing the quenches for
different values of the interaction strength.
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Non equilibrium dynamics of quantum systems -

Quantum Quench of Optical Lattices

*  Nonequilibrium — the new frontier : Old and new questions

Many experiments: cold atom systems, nano-devices, molecular electronics
Isolated systems — effects not washed out by coupling to environment

Fine control of parameters

Many systems described by integrable Hamiltonians

*  Nonequilibrium Quench protocol: release bosons in optical traps

S @ o | ol o | 8. ‘ o Mott

Bloch et al g(;g‘;er etal | i . A
- O — . " . i
i 2008 o ! ;

/ I" j‘\\ ‘f{\‘ "I‘.-l.‘ | [ [ \ [

® o/ ] \.;‘ \o," o \of \o |0/ o |0/ \@/ |0
N
® © o o © @ © @ \o/\®, o/ \8/ \&/\o/\®, \e/\
The Lieb-Liniger model The sine-Gordon model

Pirsa: 19080072 Page 3/44



Time evolution - Quench protocol in isolated systems

Quench protocol

* Isolated system with Hamiltonian /(1) — //[4(!/)] depends on “work parameter” (1)
* Initial state, |1,), typically ground state of //(0) — /1[A]
* Evolve initial state under (/') = H[g(/") from ' = () to ' = where
g(t’)
13 il .
. I3 it
Hg(t)) = H|B
@ B
1 (() | 4(0)
A ” 9 ' 't / d \ \ | A\
[P, t) = Te "o HUEDA 1Py s > D, t) = e TP,

Sudden quench

* Process depends on initial state and on Hamiltonian
* Local characteristics: calculate evolution of local observables, correlations ..
* Global characteristics: quantum work, spread of entanglement ..
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Non equilibrium dynamics of quantum systems -

Quantum Quench of Optical Lattices

Nonequilibrium — the new frontier : Old and new questions

Many experiments: cold atom systems, nano-devices, molecular electronics

Isolated systems — effects not washed out by coupling to environment

Fine control of parameters
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Time evolution - Quench protocol in isolated systems

Quench protocol

* Isolated system with Hamiltonian /(1) — //[4(!)] depends on “work parameter” §(!)
* Initial state, |D,), typically ground state of //(0) — I1|A]
» Evolve initial state under H (/") = H[g(!) from (' — () to t' = where
g(t)
13 il .
. /3 it
H(g(t)) = H|B]
D
1 (() | 7(0)
\ moo—i [P H () dt \ . iH ) 5\
@, t) = Te "o T D) e [, 1) = o711 ))

Sudden quench

* Process depends on initial state and on Hamiltonian
* Local characteristics: calculate evolution of local observables, correlations ..
* Global characteristics: quantum work, spread of entanglement ..
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Nonequilibrium Thermodynamics -Work done in a quench

* During the quench energy is pumped into the system- 11" /... — . work is done

First law of thermo’ [/ /() + 1" butsystem isolated: /() — (),s0 (] — (I

tH nitials I€]‘..

Work - random variable : involves two measurements - initial and final energies,
- at initial time - yielding |V:) and€/  with probability /’, |
-at final time - yielding V..) and /2, with probability /. = [(V,,[D))

* For asudden quench the work distribution: (Talkner et al 07 “Not an observable” )

PW) =Y (W — (E, — ) [(¥,]|P)]?

A

* The average is:

(W) Tr(Hipg) — Tr(Hip;)
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- If /7, is gapped and translation invariant - continuum of excited states into which |©,)

Nonequilibrium Thermodynamics -Work done in a quench

P(117) has the form of the spectral function: ¢, Gambassi iy
Palmai, Sotiriadis, N ///
Definedfor 1 ~ 5710 1, Mussardo, Calabrese, Ny i
‘ Goold ... : 08 -’18
A delta function at threshold 11— 4/ P ST A
weighted by the fidelity / (W], " transition from the initial state to the ground state of //,

with 11 2+ 0l lowest threshold for the continuum.

Power like behavior at threshold  /7(117) ~ O(117 — o/ — 2 ) (10— o f0 — 2m)"
Similarly the four-particle emission continuum threshold |1 b+ o0 F
It there are bound states 7/1;, then delta function may appear at 1| my, + 0K

Work distribution directly measureable

Reversible and irreversible processes, entropy production, spread of entanglement

Fluctuation theorems :  Jarzynski 97 (. "'V . 21" Cohen-Galavotti 95
Crooks 99 i) v and more.

- relate equilibrium and nonequilibrium, relate forward and backward evolution

can transition
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Nonequilibrium Dynamics - Loschmidt amplitude

* Claim: Work distribution is related to the Loschmidt Amplitude (Talkner et al 2007 )

g (/) - <‘l’,‘ ‘ o H t “l) _. > Related conce?fcs:
Return Probability
Survival probability
O di . Persistence
om— /)(”) - / ) (_.fH"|”r"(J’(/) Scrambling
s &

* The Loschmidt amplitude probes the full Hilbert space of states

.y ; el — My ] \ y ..‘II_J( (_’:47 . —~— ) ‘
(fli” ‘.ll)." ( ' ! (I),_: \ { SRS ‘ ll'.'.- ‘I).__:| B Y

e ———

starting from and weighted by overlaps with initial state |©) e D)
Ovbservation of DQPT in lsing model

 May exhibit singularities Dynamical Quantum Phase Transitions DQPT (Hey! 18 ) e RGTTEE

some similarities to thermodynamic phase transitions, Fisher &Lee-Yang zeroes . / iy
/ \ T
| § , / \‘\__.,r-‘;" \'\Q“""
\N( 1) I \ ||"|"_‘\_;H"\| Jurevic et
e al 17w

DQPT depends on initial state, not only on the Hamiltonian
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Quench of an optical lattice: gapped scenario

* Quench system from an initial Mott state, the ground state of very high barriers (BH model)

*Y g Greiner et al ‘02 Bloch et al ‘08
3 (N> 3
MI __[___
N=3
2 <Ny =2
e\
Ne2 J - aF
i ' - @ s .
| ~<\\\ “N>e & e | . | 0. -
MI .o .
N=| =
i \<N>-O - . |
o . 4 .| . o .
3V W7V 9 -p - N

Fisher et al, 1989

BH model —» SG model
* Quench (e.qg. SG as effective low-E theory of BHub) / \ ot
Hs(M? = 00, 8) — Hea(M?, 3)
1

. - AVAVAVAVARIEEE:

N -
* Another realization: pair of coupled one-dimensional condensates of interacting atoms (Gritsev et al '07)

o l [ 12 - , a1l
Heor (M~ 4 g /ll.F 1|| () o) V[ cos | Gg(r) |
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The Sine-Gordon / Massive Thirring model

* The Sine-Gordon model: Quantum Integrable (Zamolodchikov*2 ‘1978)

[ [ > ) .
Hs(M, 5) = 5 / Ao {H () + [0d()] — M2 cos [Bd(x) }
- Low-energy effective action of many classical and quantum systems (e.g Giamarchi book)
Bose Hubbard model Quantum impurity models

Spin chains KT phase transitions
Interacting bosons

* Itis equivalent to the massive Thirring model (S. Coleman ‘78)
Hoarrar g, g) ! / ( () () o] () (a) ] |

g / (.f'i‘ () ) F'i \:,I':JF"[,I':):) Fdg / ."Il\:_f 1 () () L)

Parameters are related in a non-universal way (depend on reno’ scheme) /. /7 <> 111, ¢

* Hamiltonian is Quantum Integrable (Bergknoff and Thacker 1978)
spectrum: solitons, anti-solitons of mass  7) for repulsive interaction I 7 ST

solitons, anti-solitons and breather bound states for attractive interactions () 3 [

* Non interacting limit: ¢ — 0. 7 — dr  Luther-Emery point
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The Sine-Gordon / Massive Thirring model

* The Sine-Gordon model: Quantum Integrable (Zamolodchikov*2 ‘1978)

Hool M. 8) — ~ [ de L1120 + 10602 — M2 cos (B ()] )

- Low-energy effective action of many classical and quantum systems (e.g Giamarchi book)
Bose Hubbard model Quantum impurity models

Spin chains KT phase transitions
Interacting bosons

* Itis equivalent to the massive Thirring model (S. Coleman ‘78)
Hoarrar g, g) L / ( () () o () () ] |

Fong / (I.f'i‘ (o) () A ! \j,r]r"[,r):) Fdg / Oy () (o) (e)y ()

Parameters are related in a non-universal way (depend on reno’ scheme) /. 7 <> 111, ¢

* Hamiltonian is Quantum Integrable (Bergknoff and Thacker 1978)

spectrum: solitons, anti-solitons of mass  17) for repulsive interaction I 7 - ST

solitons, anti-solitons and breather bound states for attractive interactions () 3 71

* Non interacting limit: ¢ — 0 br Luther-Emery point
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Nonequilibrium Dynamics - Loschmidt amplitude

* Claim: Work distribution is related to the Loschmidt Amplitude (Talkner et al 2007 )

G (/) . <‘[’,‘ ‘ o H't “l) _. > Related conce?.ts:
Return Probability
Survival probability
2 dt , Persistence
— /)(”) — / ) ("}H””"{(j(/) Scrambling
& M

* The Loschmidt amplitude probes the full Hilbert space of states

| : | Y~
G(t) = (D;] e M D) =S e (W, |D,)] * J'\" e 1

e ——

starting from and weighted by overlaps with initial state |©,) e D)
Observation of DQPT in lsing model

* May exhibit singularities Dynamical Quantum Phase Transitions DQPT (Hey/'18) e RGTTEE a

some similarities to thermodynamic phase transitions, Fisher &Lee-Yang zeroes . / et
/ \ T
I ) 7 N \'\Q"""
N1 lim : log |G(1)] Jurevic et
S al 17w’

DQPT depends on initial state, not only on the Hamiltonian
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The MTM model in space time lattice

* Represent the massive Thirring model on the light-cone lattice in space-
time in terms of spins while preserving integrability (Destri - De Vega '87)

+ Left and right moving bare fermions evolve N
in a discretized Minkowski space time 4 )

* To each link emanating a vector space |
with |, associated with left movers,

th

Vo, 1 right movers of ;""" intersection.

. ( ! ( l.)'
* Jordan-Wigner 2y »P30)
B . (j0)
Vi, Vie, sinh (26 + n) 0 (0 ()
. EaCh vertex associate matrl‘x >< oo (260) 0 \mh}{q{..)-: \n;h.; 1) (0
1hed 0 sinh (1) sinh (20) 0
0 0 0 sinh(20 ),
i — 'A‘. H ~ - ! 1) {
) 77 with ST g or . QU microscopic transition amplitudes
. : LN LN
) rapidity cutoff for bare particles, related to bare mass ., —sinye *0, mass = -

* Thermo limit N. . o witho — L /N fixed, continuum limit o 0.0 » ~, with i fixed
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Time Evolution on the Lattice

* Time evolution by » consist of a move to the left
followed by a move to the right (DDV ‘87, ‘89, 92)

P& ‘ sinh (20 1

sinh (20 n

where

Tl ‘I.i," jfr’fﬂ” (__)_]/[J’L:[_H FO) .. ”;_-_x\ ](.H (‘)_]/i’;:l\'(fl ‘ (_).}.

* The time evolution overinterval ¢ M

N M

sinh (20 + n) _ _ M
x 7(—0)r 1(0)]

1 !

1111

sinh (260 —n)

* The states in this regularization scheme take the form (Thacker ‘81)

N

W) => agy ]l b —> 2 auy L] vd, Gio)lo)
- [—1

pa— .
=1 continuum
limit

[
1./
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The Loschmidt Amplitude on the Lattice

* The survival amplitude to end up in state ;) having
propagated for time / — 1/0 on lattice of length /. — N0 X

) ) sinh (20 + ) o . | 1 M .
G(t = Mo) [imm — (D |7(—O)7 (_(—)}‘ P;)
L=Né—oo | sinh (20 — ) ' '
. \1 - (6] "4
7 (l}‘ ‘f ( (‘)]; ll(_) I/J‘ ‘(I}F:-j n- e . T p
IHH _. YN M ) YN AT L) H-: R _/
L—oc sinh*™ ™ (20 — n) sinh”™ ™ () ; N S
> " 2M
ST A
. . ) . n—-oe —t——
used identity 7 ' (O) < 7(© — 1)) (Wang etal. 2017) o Pl PRy
> %
e N | LV
* Calculating the Loschmidt amplitude became a classical 2d | x &) = ’ PBC
lattice problem, with 7( ©) 7(© 1)) the vertical transfer “

matrix of an inhomogeneous 6-vertex model ona 2\ x 21/
lattice, with periodic BC in the horizontal direction and |,
initial and final boundary states.
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Rotating space and time

* Rotating to a more convenient configuration (modular transformation)

e ) - N n (=] l‘l = 1)
b ] .2
Y \x_-— T ._,"/ f /P .’ Ir‘ . *}/
° 1T i u ‘Li " I‘.
n— \’\“ L N oy # |J i 1 l |
o DL oM (b, bt ] |by) L
g . | 1 '
n— e S “I F‘ ‘ ** r i '
5 1 \_ RN \
TNMTT T RN \_L
e N 1 oM |
. s f

The initial state becomes boundary conditions in the horizontal direction, the periodic
boundary conditions becoming a trace in the time direction and parameters associated
to vertical lines being exchanged with those associated to horizontal lines.

VA

I ' \
(Jl.fl 111 - - I “_.'li_‘ | i.f'l.l‘ |\ =) [ f()l “l"_'.‘
L=Né—oo | 8sinh (20 — ¢) sinh (1) S
The trace being due to horizontal PBC
with the “quantum transfer matrix” (Pozsgay '13)

L () Biplu— )R Ra(u— (-4 n))... Ko (u— )00 (e — (6 1))

acting in the horizontal space.

Pirsa: 19080072 Page 19/44



Some interesting initial states

* Consider initial states that can be written as the product of two site states

The states ¢’ ¢ correspond to the ground state and highest excited state X
of the Hamiltonian when the initial mass 77/, is very large. In bosonic language ,/\ \ /\
the coefficient of the cos(/7¢ (7)) termis very large with the initial states ¢, f ° \-/ \

corresponding to those which minimize or maximize this particular term. \/ YERY; \/

* -Inalow energy description of the superfluid-Mott transition these initial states
correspond to having a very deep optical lattice with either positive of negative on site
interaction

- In a low energy description of a pair of coupled condensates these states correspond to an
initial phase difference of 0 or 7.

* Note: Quench process involves all eigenstates of the post-quench Hamiltonian which may
result in the Sine-Gordon description being invalid.
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Loschmidt amplitude

* The Loschmidt amplitude takes the form

N M _— : ' N Vs
> (4 . | i , vl (—0) ['(O)|v) v|( )
G(t) [1m - _ : : [ N
N—oco | sinh (20 — n)sinh (7)) vl
| ON M VYRL IR )
lim — o5 - N i
N < | S1nh (2¢ ) simh (17) — Ul =
| ) ) : | , )
2N M v N
|

lim S SR
Voo | sinh (20 — 1) sinh (n)

< | Vg >

Maximal eigenvalue dominates in the infinite volume limit /N

If a level crossing occurs at some time /.. then a DQPT takes place.
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Maximal Eigenvalue

« Need the maximal eigenvalue of the quantum transfer matrix (¢ 7'(w) oo T'(—w) |v)

evaluated at « O

Equivalent to finding the ground state energy of the XXZ model with open
boundary conditions (Pozsgay ‘13, Piroli, Pozsgay, Vernier ‘17):

* Claim: For aninitial state \r'{L )) specified in the continuum limit by ¢ — « 2.
(i.,e. ¢ x/2is ground state, and (0 highest excited state), the
unique maximal eigenvalueisgivenby: A .~ A.( ©O) Book: Off Diagonal BA
Wang, Yang, Cao, Shi 17

sinh (2w 1) , \; 1) sinh (w4 Ay
A 5 1o ([ 1 /9 . 1 ( =) <1 [ \ \ \
) . sih” (w4 (8 Ny2)) [smh(u ) st (o )

53T [
‘-le!l )

sinh (2w N o _ _ o 11 sinh (w
sl (e (& 1/2)) [sinh (u ) sinh (o () 1) ][

sinh (2u) sinh (u As) sinh (A

” sinh (u

st (wu A ) sinh (v + A

\

\,, + 1) sinh (A

with the Bethe parameters {\,. ; — 1 ... A/ — 1 /o} satisfying (for initial state /(&) )

() ) winh? () [« 11/ ( =) - | \ ) " \
sinh (2A, i) sinh™ (A 1/2)) | sinh (A, O)smh(A; + 6 1) I [ sinh (A n) sinh (X, + A

B A

ol
S LA

. {9\ . ¢ T3y . i\ Y\ ] \ ) .
sinh (27 1) sih™ (A (& 1ni2)) inh (A\; ©) s (A © ) 1) sinh (A
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A nonlinear integral equation (NLIE) for an Auxiliary Function

* Itis convenient to rewrite the BA equations in terms of an auxiliary function a, (():

\ \ \ 2M Vi \ \
o o sinh (. — @) sinh (u 4+ © —n) sinh (u A\, -+ n) sinh (v + Ay + 1))
apelu) = h(u, &) . l[ . :
sinh (4 + ©) sinh (wu © 1) sinh (1 A/ ) sinh (1w + A 1)
) < (0 ) s 4 (& 1/ . v .
with the boundary term o, ¢ e s fe =S 0/2) encoding initial state
SR sinh (2u 4+ 1) sinh”™ (v + (& n/2))
{ =m/2 - quench from ground state
¢=U - quench from max excited state
The BA equations for eigenvalues are: (1, ¢ (1) — I

Egn depends on its eigenvalues: turn it into a Non Linear Integral Equation - NLIE (DDV '92)
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The Loschmidt Amplitude

* In terms of the auxiliary function the Loschmidt amplitude is given by:

| N A I 'm" N (NIRRT . “"”/' : =& |
0o (1) if 0l log / { | <|Jf g ' l' | | a; oLt 1) A | CLpi o ! “og || a, '.,!"‘

where:
i )
I O L / / m mg cosh (2e) cosh ( L ) ground state energy
7”;/ [ LR H.’fl. ' T :
- log/ ) . / dpe" > log | o () { I / dppe 70 ]u_"_“ F (g "|
F - the Fidelity = (WP, ) < It will appear in the work distribution as the weight of the delta
function peak.
It is the boundary contribution to the ground state of on a
finite interval (LeClair, Mussardo, Saleur, Skorik '95)
- Compare
log G(t) = log Y e "Bl |, |2 with ¢, — (W, ¢,) the overlaps from initial state

7 .‘ - :(r,.‘ ) ’. . o
iyt + 1In |Cy|™ + log |1 I\ |f H(Fy = Fo)l

:( nf;
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Maximal Eigenvalue

T(u) @ T(—u) |v)

« Need the maximal eigenvalue of the quantum transfer matrix (v
evaluated at O

Equivalent to finding the ground state energy of the XXZ model with open
boundary conditions (Pozsgay 13, Piroli, Pozsgay, Vernier ‘17):

 Claim: Foran initial state |©(&)) specified in the continuum limit by

(i,e. ¢« ,n/2isground state, and ¢ — 0 highest excited state), the
unique maximal eigenvalueis givenby: A Ac(©) Book: Off Diagonal BA
Wang, Yang, Cao, Shi 17

_ sinh (20 4+ 1) Y o _ n _ i _‘ sinh A, 1) sinh (- Ay ")
be(u) st (24) S (W . i/2)) s {w A4 B ) s (o — 6+ ) l[ sinh (wu A ) sinh (u 4+ Ag)
sinh (2¢ — 1) . o . . _ _ Y sinh (u N, -+ ) sinh (v -+ Ay 1)
sinh (2u) il o 1/2)) lsinh (u SELEHIRL = i l[ sinh (u As) sinh (1 4+ Ag)
with the Bethe parameters {\,. ; — 1 ... A/ — (/o} satisfying (for initial state /(&) )
sinh (2A, ;,-'!."\I|||‘:\. (& 11/2)) | sinh (A ) sinh (A, + O — 1) sinh (A \ n) sinh (A, + X\ n
sinh (2 + 1) sinh” (A, + (£ — n/2)) [sinh(A; + O)sinh (A; — O+ n) I[ sinh (A Y 1) sinh (A, + Ay
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The Loschmidt Amplitude

* In terms of the auxiliary function the Loschmidt amplitude is given by:

o m e (ordi i mil [ il ‘
08 G(t) = —ilt +log F —i" dpe U log [ ae( + Q) +im= | dpet " log |14, (n

where:
i &
I O L / / m g cosh (21¢) ¢ sh ( —H ) ground state energy
7”;/ [F LR R H.’fl. Ao i :
- ot 2 (- / dpe 7 og | I Ny ) | | / i|;.'¢ AR ]‘_n_"_“ - (pe ;L_'||
F - the Fidelity N: (WP, < It will appear in the work distribution as the weight of the delta
function peak.
It is the boundary contribution to the ground state of on a
finite interval (LeClair, Mussardo, Saleur, Skorik '95)
- Compare
log G () |n;;\, e et |2 with ', (W, &,) the overlaps from initial state

, , C2 e
iliy t + 1In |Cy|™ + log |1 I\ f'-|“' iy = Fo)

Pirsa: 19080072 Page 26/44



A nonlinear integral equation (NLIE) for an Auxiliary Function

* One can write a non linear integral equation for alw) (DDV 92, Pozsgay ‘13)

X

log ay ¢(u) merwlllll( N) Flog [Ke () / dpe G — po —aC,7y) I<:1_1;|J Foag e+ Q)

I

/ dp G(u — o+ 2C,v) log |14 u_'[;r 1()

sinh (w 1)
I (u &)

sinh (u iv)

/. dw sinh (ww/2)
/ Y 2eosh (e /2 ) s | e/ 2
I’rl':.‘ .I / e .r I II‘|I|I ' :
J " 27 .'l-l\vh"' 2/ 2) sinh
)

The integral run over contours [{ L 7( in the complex plane with ( << min{vy,n 1) to reproduce the BA eqns. The
form of the NLIE depends on whether the interaction repulsive or attractive and reflects the existence of bound states

|.>_:_, el | \u_> ‘

A ) 7 )
—
. /)
1Q = 1 )/ 2
> > ;
> (48 (AWl )/ 2
7y /2
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Generalities

Non-equilibrium strong-weak duality

- Under the replacement, 7y —> 7

(
Q

o}
=
jo R
/—.
|\-’

both the BA eqns and the Loschmidt amplitude are modified by  — —1{
G()ler = G(—iz e

S =

relates the non-equilibrium behavior of the system in the repulsive regime
to that of the attractive regime.

- Free theory is self dual

Dynamical quantum phase transition - DQPT

- No DQPT appears for the two quenches we studied. It occurs when there is a crossing
of A["""with next level, leading to non-analyticity of the auxiliary function ¢ (/).

Need: | + a(y + 2() Dor 1l +a '(j_;; 1C) () but BAE require real solutions

- DQPT will appear in finite mass quenches -

|+ ag(1)] is related to a non-equilibrium distribution function, therefore
non-analyticity in the Loschmidt amplitude is reflected also in quenched observables.
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The free-Fermion point - I

Tl ) O _ -
Set ., namely [J~ L7, then G(x) =0, J(x) = d(x)

* The NLIE yields the auxiliary function:

o _ _ sinh” (v — (£ —amw/4))
log a;y ¢ (u) 2mit sinh (2u) + log o /
sinh” (uw + (& —im/4))

* The Loschmidt amplitude:

sh(p—97° . , 1
Lo \/ ~ ‘ Yoo L cosh (240)
sinh (s + &) J

) > dp
log G(1) it +InF o+ L mq cosh (2p0) log < 1

J
1

* Fidelity:

cosh (gt — &)

ol
J

Same result can be obtained by Bogoliubov rotation (Silva '08):

i

o 1[/; _
F [ g cosh (24) log < 1 4

sinh (it + &)

S

I
* Note:under & > ¢ = - the two initial states are mapped into each other.

We have /\(u) » K '(u) andso: E;{:/_)

¢ {L;{: { )‘f T e, related by time reversal
- Loschmidt echo is the same for both quenches - initial states are related by a particle-hole
transformation which is preserved by the quench
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The free-Fermion point - II

* The work distribution for the quench from the initial ground state :

P(W) df iweri 'G(1) _
A _— I Silva ‘08, Smacchia, Silva 13

N, / il‘{,-'“"' S ‘ F L / ~ i g cosh (270) log JJ \.urlhl{';!]J ’}

. L 2my) :': / ) P O
27 \ (N N+ 2ing)

- The term o1\ — 0/7) weighted by the fidelity / comes from the transition to the ground state.
- There is an edge singularity at 11" 2, + o/0 with exponent 1/2.
- Keeping further terms in the expansion of the exponential to further edges at 1| g + 0L

* The work distribution for quench from the initial state of maximal energy: 11" &6/ 110

P(W) = FO(W) + 2moFLOW —mg) + 2F miL70(W — 2my) (Gambassi, Silva ‘11
Smacchia, Silva 13
S L . 4 2myg .,
Frng A1 2m0 )W . T Palmai ‘15)

27 \ (K 2mp)?

Additional delta functions at |1 My -+ 0 and atthe edge |17 Jing + o). the Hilbert space of the free
fermion model splits into sectors with even and odd particle number. The previous initial state is contained in the
even sector whereas the max excited state has overlap with both sectors. It can transition to a single particle excited

state with zero momentum resulting in the additional delta function. Critical exponent at threshold =- 3/2
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Interactions - the repulsive regime

. , . /s 5 . Rep free Att
Turn on repulswe Interaction: v - .:T__;-"l,or" bt 8T ; S * @

*  Work with the auxiliary function:

0 () log a; ¢ (u + iy/2 — i€e) + 2mit cosh ( —u ) log Koy ¢ (u)

where A (u) — [<(u + 7 /2) is the shifted boundary phase shift

* The auxiliary function satisfies

» I

0, e(uw) / dp G(u — g, 7y) log ‘ | + Ky e (pt)e . (1) —2smt coshi{ o ph)

X
* X

/ dp Glu — g+ iy — 2e.n Jlu-___y‘l FIC, e(—p)ette ) m=mmteosh D)

x

* And the Loschmidt amplitude

: mi [ [ 0o e () — 24t co
log G (1) chaot + log /o 4 - / <.|,un.mh(_,;){lm| KCpe(p)ehistr)—2mmtcosiid -."
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Interactions - the repulsive regime

* For the quench from the ground state:

) Fa(W Al a4 (W b — 2imn) 7 (W 05)
I \.-'|'|]' SENV /4?2 \

- Resembles the non interaction case: after expanding &1 about the edge
singularity 117 — 0/~ 211 we get that the edge exponentis 1/2.

- The effect of interactions on /’(11") near the threshold is negligible, since in
this region the quench process is governed by transitions to excited states
containing only two quasi-particles moving away from each other.

* Forthe quench from the max excited state:

P Fo(l ) mF L6 ol m) 2 1 " ‘ ol ok 2in
7] Red Ko (Larcosh [ * ) |
| | & (W aE — 2m) ) . 1 )
‘ VW GE)T fam?
"
as Ao oolr) diverges |/ we have again an edge exponent of -3/2.
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Work distribution at threshold: quench from ground state

. . )2 \ Rep free Att
Repulsive regime 1n < /7 < &7 —
() l/2
Nt
p(w)
, (= pYn=4 |
— ﬁ:fﬂ=4.l7
1.5 - i n=4.52 " !
A n=5.13
Lot - fn=588
Bn=6.45
0.5 ‘
1
- The edge of the rescaled work distribution () — 1 /2017 ) /(i LF)
for quench in the Sine-Gordon model, measured in units of mass from
the ground state energy w — (\\" — 0/7) /. The dashed line shows

same quantity for non interacting bosons while solid lines are for
different values of interaction strength. The solid black line is for a
quench of free fermions.

- The interaction modifies the exponent from |/2to 1/2.
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Interactions - solve NLIE by iteration

- With respect to the non interacting case, besides mass reno’ 72 —> 111, rapidity reno” 21— 7)1/
and boundary scattering reno” /v k. we have the interactions encoded in1)( /)

- To solve NLIE expand exponential and log, keeping lowest orders (Palmai, Sotiriadis ‘14)

The NLIE (for ground state quench)

b / A Gl — K (o (p)e=rmmteositen) / dpGlu — o+ K (pom ()

The echo

- Start iteration with non interacting value:1)|t,| () only/ — () enters and each 71 term comes with
. 2omnteosh Ty, contributing to 7(117) for 110~ 25, . We also obtain:

—~ [~ dyi . .
N lae) \ / ¢ amnd ' PG (e T K S () Cr (U o+ e, v)K! )

Inserting into amplitude, we note that only 77 — |./ — 0 term has factor ¢ /""" sh S

can contribute in the region 0 < 11" < 1;n (we absorbd [ into the work 117 o/ 117),

soonly it

- Iterating further gives the exact expression for a larger window. Afterthe (,, — 2)'" iteration,

we get an exact expression for/’(11 ) with 11" = 2/
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Work distribution at threshold: quench from ground state

R | . . {7 )2 Q. Rep free Att
epulsive regime 17 < 7 < 87 - - -
() | /2
870 1= < A
p(w)
—_ ﬁ:fﬂ=4.|7
15 - [ n=4.52 )~ !
fr=5.13
Lot - fn=588
Bn=645
0.5 ‘
1
- The edge of the rescaled work distribution () — 17 /20107 ) /(i LF)
for quench in the Sine-Gordon model, measured in units of mass from
the ground state energy «w — (\\" — 0/7) /. The dashed line shows

same quantity for non interacting bosons while solid lines are for
different values of interaction strength. The solid black line is for a
quench of free fermions.

- The interaction modifies the exponent from |/2to 1/2.
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Quench of an optical lattice: gapless scenario

- Quench protocol: Release /V neutral bosons from a deep trap T; =2730,j=1---N

oo VYR

e @ ®e ® o o
)

- Bosons well described by the Lieb-Liniger Hamiltonian

Hp g / dax ‘ h! [I,f"}(')'r'_/r[ r) 4+ ceb' (2))b(x)b' (x)b(x) ‘
2m ' ' ' S ' I. Bloch et al

Coupling: ¢ = () repulsive, ¢ < () attractive Y e—

vt H

- Allow them to evolve (7)) — ¢ """"“2 |0 ) |ocalized peaks broaden and bosons begin to collide

- How to calculate evolution? Use partition of the unity?

{ A 11 \ a‘. { - N/ \ - r‘. : f \ |/ \
Wo(t)) e L W € Hy; \ n)y{n|Ww.) \ et ny(n|w,)
S A
Tl n

- But what are the eigenstates |71) and how to calculate overlaps?
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Eigenstates and Yudson states

* The exact eigenstates of the Lieb-Liniger model (Lieb-Liniger 63)

N N

o ko — K resen(a; L) ) :
| - l Vo, ! / A ! }/ f__f'h.'_{_‘ [y \
(ki) = [ Ve [ 2B R T eibimny ) o
' iyj=1 : /=]
27 | -
For PBC the momenta satisfy /, TN \_‘ o(k; — ki) with (1) = 2arctan (x/c)
) ) f"..."

The integer quantum numbers {1, determine the momenta |/}, denote eigenstates {1, })

* Claim (Yudson ‘82, Goldstein, NA 12) : Can rewrite the standard partition of the unity

f L\ /J | J \(J 1 normalization
- T p)iqmn, —~ n;r)lyn
In \ 1 ._l. | jl as [ \ 1 r}l 1llfl (s
o N(in,;t) L N({n;}) \
in terms of Yudson states {/}) / AN a0 : rN) “f R Ty 10)

* This allows the computation of overlaps and therefore of time evolution of [V,):

rh] DD Yo sk (M ihwt) K +iky Other approach:
W, (1)) \ —— {n;}) Quench action
mw = N({n;t) Perfetto et al. 1904.06259
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* Displays recurrences: -

The Loschmidt Amplitude

The Loschmidt Amplitude:
(;(/ ) :".t]J? ¢ tH P ;'.(]:! ]t ,
with

* Exactforany ¢, /V, L.

)

W|th ‘H

‘ l | _)f ) C ]._ / : [T

N/ I and

(. characterizing the initial state
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The Loschmidt Amplitude (infinite volume)

Open system (partially filled lattice)  — N/ < 1/0
- Repulsive interactions simplifies for strong repulsion ¢ > J1w
y £ 4\ I v ) ]{.H““f

Ef ( / J .\ /’ { I ] ( \ =

with o — moZ:|| P17 /2

el ‘ L+ - ‘ B Effective increased distance due to repulsion

PI* =) (i~ P3i) Measures how many particles were exchanged

Sum over permutations corresponds to a sum over particles exchanging positions: e.g 7’|
corresponds to a neighboring pair exchanging positions, | /’|* =« could be 4 nearest neighbor
exchanges or 1 next nearest neighbor exchange.
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The Work Distribution (repulsive interactions, infinite volume)

* The work distribution is obtained from the Loschmidt amplitude

=W

Work distribution for repulsive bosons Work distribution for free bosons

- For large value of 11" (short times) no dependence on interaction (no overlaps initially)

- For small values of 11" strong effect of interactions: 72(117) ~ 11 "as opposed to: P(117) 11
Indeed, (G(/) " 1/ vse |Gir)T o+ 1/t as > 0oL In 1-d even weak interaction have strong effect.
- Average Work {1 /‘Hl WP N/ (L H

cf Jarzynski equality

P TN AL | AW

[ i

- Exponentiated work (yields all moments)
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The Work distribution (attractive interactions, infinite volume)

For ¢ <= U there are bound states of 1 -bosons, 1 — 2.--- .\
(momenta / form complex - strings: &, — k|t ijc/20 )~ 1-n

* Using a generalization of Yudson representation, we find

"‘i Hlii f }r)HIIiH-HIIill‘.i‘ J | })fu-:nu{[-.'” }

= Punbound (17) same expression as before with ¢ — —¢, so 4. < o due to attraction.

Similar to super Tonks-Girardeau experiment, where one prepares system with largec =~ U
and then suddenly quenches to large « . Note, our expression valid for any ¢ .

- Prouna(117) is due to the strings, 71- string contributing 7, 1,0 (107) o e[

Transitions to states containing bound states are highly suppressed and in the true
super-TG limit vanish entirely.

- For finite « () new effects: bound states lower the energy and work distribution becomes
non vanishing at negative values of 11",

- Indeed, for a 2- string .allh) = vy , nonvanishing for — |¢[* /1 < 11

= There is a non zero probability that work can be extracted from the
system. This does not violate the 2nd law of thermodynamics since (11, - () Jarzynski ‘11
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The Work distribution (repulsive interactions, finite volume)

Start from a fully occupied lattice - boundary effects important

As before:

it ‘ e o1 T L2 (24 ap W)
P) / "G(1) W 21— =
J o 2n [ w

9,
_.-")

But boundary conditions enter when calculating 7, — 11207 |[

For instance when p < 0 the permutation /7 (23 V1) gives o — o NN - 1)/2
however with PBC it gives ;. md N /2

- Region 11" ~ (11") not affected by BC, dominated by few exchanges of
particles average work is as before.

- Region 11 (1W7) strongly affected, all permutation contribute
We have P(117) ~ |1/ > corresponding to |G(7)|* > /1Nt
As opposed to 71 o1 and |G(1)]* — 1/t" - as before.

The strongly interacting particles have no space to expand into unlike previously, resulting in slower decay of the echo.
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Conclusions

Quenches realizable in cold atoms experiments, work distribution measurable

Calculated work distribution of a quench in a strongly interacting, gapless
system.

Studied bound state contributions to the work distribution.
Showed they dramatically change the distribution and allow for negative
values of work

Showed that interactions strongly affect the universal edge exponents of
the work distribution and also the long time decay of the Loschmidt echo

Calculated work statistics for some quenches of the SG Hamiltonian - describes a
sudden lowering of periodic potential

Calculated for attractive and repulsive interactions, determined
critical exponents at threshold
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* Connect to nonequilibrium thermodynamics: entropy production, fluctuation
theorems

* Smalland large systems - increase role of fluctuations (fluctuation theorems)

* Quench across critical points, defect production, Kibble-Zurek dynamics,
scaling and universality

* Time dependent quenches: slow drives, Floquet
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