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Outline

* Half-BPS Wilson loop in N=4 SYM as conformal defect
* Defect correlators at strong coupling from AdS, string worldsheet
* Exact results from localization

* Non-supersymmetric Wilson loop, defect RG flow and a test of “defect
F-theorem”
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Wilson loops in N=4 SYM

* In N=4 SYM, it is natural to study Wilson loop operators that include
couplings to the six adjoint scalars @' (“Maldacena-Wilson” loop)

W — trPed dt (it Ap+|e]67 1)

where x*(t) is a loop in spacetime and 0'(t) a unit 6-vector.

* Special choices of (x*,0!) lead to families of Wilson loop operators
preserving various fractions of the superconformal symmetry

(Zarembo ‘02; Drukker, SG, Ricci, Trancanelli ‘07)
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irsa:

Halt-BPS Wilson loop

* The most supersymmetric case is the 1/2-BPS Wilson loop:
= xH(t): acircle, or infinite straight line in R? (related by conf. transf.)
= O': aconstant unit 6-vector

* E.g. take the line x°=t, and 0! =3¢

W = trPel dt(iAc+2°)

* This preserves 8 Q’s and 8 S’s (superconformal charges): 1/2-BPS.
(Similarly for a circle, but it preserves 16 lin. combinations of Q and S)
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Half-BPS Wilson line as conformal defect

* Let us recall the symmetries preserved by the 1/2-BPS Wilson line. The
bosonic symmetries are
= SO(3): rotations around the line (i=1,2,3)

= SO(5): R-symmetry rotations of the five scalars ®?, a=1,...,5 that do not couple to
the Wilson loop operator

= SL(2,R): dilatation, translations and special conformal transformation on the line.
1d conformal symmetry (Kapustin ‘05, Drukker, Kawamoto ‘06)

* Together with the 16 supercharges, these combine into the 1d
superconformal group OSp(4*|4) O SL(2,R)xSO(3)xSO(5)

* Since it preserves a 1d conformal subgroup of the 4d conformal
symmetry, the 1/2-BPS Wilson loop can be viewed as a conformal defect
of the 4d theory
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Correlators on the defect

* As usual in defect CFT, we can study correlators of operators on the defect, of
bulk operators, or mixed bulk/defect ones. We will mainly focus on correlators
of operators on the defect

* Given some local operators O,(t) in the adjoint of the gauge group, consider

<th [()l (fl) y I rf(('i.\ng‘I‘(i) ()3(713) (] rH(i,l;JHI)ﬁ) L ()”(?l”) , JA(N(E.\LJF(]’("}])

wy
(trP[O1(t1)Os(ts) - - - Oy (1, )ed wEAFO] )

(W)

If

((O1(t1)Oa(t2) - - On(tn)))

Il

* Such defect correlators arise naturally when we consider small deformations
of the Wilson |00p (Polyakov, Rychkov ‘00 ; Drukker, Kawamoto '06)

* They encode information on expectation value of Wilson loops of more
general shapes and scalar coupling
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Correlators on the defect

* These defect correlators are constrained by the SL(2,R) 1d conformal
symmetry as in general CFT,

* Defect operator can be organized in primaries and descendants.
Primaries are labelled by their scaling dimension A and SO(3)xSO(5)
representation

* Correlation functions constrained by conf. symmetry:

1 C123

<()‘A(fl )()A (t%» - / A <()l (fl )()“) (IL‘E)()%(“» - f.ﬁl +A;’*A3?L$2+AL{*AI fA:e,+.-$| AY)
12 12 23 31

—bJ

1 - tigtsa
(Oa(t1)Oa(t2)0a(t3)Oa(ts)) = (t12t34)m G(x) X t13t24
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Defect fermion/boson description

* There is no local 1d lagrangian describing these CFT, correlators, but there is a
description in terms of N 1d fermions y' (or bosons) coupled to the bulk N=4 SYM
fields (Gomis, Passerini ‘06)

tra, P(‘-r‘”(';':\+"’;’) = / D(D \ Da e™5x Aj o rank-A antisymmetric repr.
Sy = /(h‘ [((C), —a)y + i\ (1A + ())\} + ik /f/f i

 Similarly, 1d bosons give rank-k symmetric representation

* Defect local operators are the gauge invariant objects like Y,'()_j-\" inserted on the
line. General defect correlators are obtained by inserting such operators and
computing path integral over 4d and 1d fields with the defect-CFT action

Sdefect—CFT = On'=4 + O
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Correlators on the defect

 As usual in defect CFT, we can study correlators of operators on the defect, of
bulk operators, or mixed bulk/defect ones. We will mainly focus on correlators
of operators on the defect

* Given some local operators O(t) in the adjoint of the gauge group, consider

<“"P [()l (fl) ( I ’Hfﬁf"\t+‘l‘“) ().’(f.’) (’ f”(i‘h+‘bﬂ) e ()H(fu) ( 'I.‘!!(i‘\l+(l){;)]>

(i)
(tr P [(-)I (t1)Oa(ts) -+ O, (1, )(.‘['df(,',-h%[,u}] >

(W)

((O1(t1)Oa(t2) - - O, (1))

If

If

* Such defect correlators arise naturally when we consider small deformations
of the Wilson |00p (Polyakov, Rychkov ‘00 ; Drukker, Kawamoto "06)

* They encode information on expectation value of Wilson loops of more
general shapes and scalar coupling
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The “super-displacement” multiplet

* Among the possible defect primaries, a special role is played by a set of 8;+8;
“elementary insertions” forming a short multiplet of Osp(4*|4).

* The 8 bosonic insertions are
* The 5 scalars not coupled to the loop o a=1,..., 5 A=1
* The “displacement operator” F, =iF, + D:d% =123 A5

* These operators have protected scaling dimensions, due to being in a short
multiplet

The displacement operator, which is related to deformations of the defect in the
transverse directions, has in fact, more generally, protected scaling dimension A=2
for any line defect, independently from supersymmetry
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Two-point functions

* Because they have protected scaling dimensions, their exact 2-point
functions take the form

Ca(\)

9 )
tl‘Z

Cr(AN)
to

((t1) @ (t2))) = 6 ((Fei(t1)Fej(t2))) = 04

* The normalization factors are related to the so-called “Brehmsstrahlung
function” (correa, Maldacena, sever’12) , and can be determined exactly using
supersymmetric localization. In the planar limit:

Ca(\) = 2B()) | Cr(\) = 12B()\)

VALV

B = Li(VN)
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Defect chiral primaries

* A more general class of protected defect operators is given by the
products (inserted inside WL trace as usual):

Plar ... pas)

in the symmetric traceless of SO(5). They are in short multiplets and have
protected scaling dimension A=]

* Analogous to the familiar single-trace chiral primaries tr(Z’)

* Exact results for correlation functions of these operators can be obtained
from localization (sG, komatsu '18)
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Defect correlators at strong coupling

* In general correlation functions of operator insertions on the Wilson loop are
non-trivial functions of position and of the coupling constant

* At weak coupling, they can be computed in perturbation theory
(Cooke, Dekel, Drukker, ‘17; Kyriu, Komatsu “18)

* At strong coupling, they can be computed from string theory using the AdS,
worldsheet dual to the Wilson loop (sG, Roiban, Tseytlin “17)
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Wilson loop from string theory

* In AdS/CFT dictionary, the Wilson loop operator is dual to a minimal string
surface ending on the contour defining the operator at the boundary

<‘t’> _ Z:-‘.t]'i“lg.' / D‘_\. ';’\{tD{:.w()_Hslriup; \
\ .

XM |ge=(a7(1).01 (1)) c

vy 01>,

<{‘ > /\—“}OC ._'S'class. —5 on ‘lreg

* The bosonic part of the AdS:xS> string action reads, taking Poincare coordinates
and using Nambu-Goto form (we omit fermions):

f Oy Oy
(t — (Opam O™ + 020, z) + £ . ]

where c"=(t,s) are worldsheet coordinates, r=(0,i), i=1,2,3 label the coordinates
of the (Euclidean) boundary, and a=1,...,5 are S directions
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AdS, minimal surface

* The minimal surface dual to the 1/2-BPS Wilson line is given by
z2=9, ) =1t =0, y*=0

* The induced metric is just that of AdS, in Poincare coordinates

r/sg = Lz ((H2 + rl.«;z)
S

* Similarly, one can describe the minimal surface for the circular Wilson loop,
which is given by AdS, with the hyperbolic disk coordinates

o do? + dr?

ds; =

T
sinh” o
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Wilson loop from string theory

* In AdS/CFT dictionary, the Wilson loop operator is dual to a minimal string
surface ending on the contour defining the operator at the boundary

<‘t’> _ Z:-‘.t]'i“lg.' / D‘_\. ';’\{tD{:.w()_Hslriup; \
\ .

XM |ge=(a7(1).01 (1)) c

vy 01>,
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* The bosonic part of the AdS:xS> string action reads, taking Poincare coordinates
and using Nambu-Goto form (we omit fermions):

f Oy Oy
(t — (Opam O™ + 020, z) + £ . ]

where c"=(t,s) are worldsheet coordinates, r=(0,i), i=1,2,3 label the coordinates
of the (Euclidean) boundary, and a=1,...,5 are S directions
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AdS, minimal surtace

* So the minimal surface dual to 1/2-BPS Wilson loop is an AdS, worldsheet
embedded in AdS., and sitting at a point on S°

* |t preserves the same superconformal symmetry OSp(4*|4) as the dual
Wilson loop operator

* SL(2,R) is just realized as the isometry of AdS,

* The SO(3)xSO(5) correspond to rotations of the transverse coordinates
x'(t,s) (i=1,2,3) and y3(t,s) (a=1,...,5)

* By expanding the string sigma model around this minimal surface, we can
study the dynamics of small fluctuations of the worldsheet
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Worldsheet fluctuations as fields in AdS,

* It is convenient to adopt a static gauge where x° and z (which are identified
with the AdS, worldsheet coordinates) do not fluctuate

* Then we get a Lagrangian for the 8 transverse fluctuations x'(t,s) and y3(t,s),
which can be viewed as fields propagating in a rigid AdS,

- / (IZ(T\/_(_}LB

Lp=1+Lo+ L+ ...

AS‘IJ —
Lo :%g“"é)px"’(‘)ymz + 'zt + %glwap,ya uya

Lyy = !/2(03/)2 + ((Z)U):l t .

etc.
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Worldsheet fluctuations as fields in AdS,

* From the quadratic Lagrangian L, =1¢"v0,2'0,2" + 2’2’ + £ ¢"0,y"0,y* we find
= 5 massless scalars y?
" 3 scalars x' with m?=2

* Since these may be viewed as scalar fields in AdS,, they should be dual to
operators inserted at the d=1 boundary, with dimension given by

A(A —1) =m?
* So we recover the 8 bosonic operators in the super-displacement multiplet
Y < P A =1

.I'i s Ft,‘ A =2
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Four-point functions

* The four-point functions of the dual operators at strong coupling can then
be obtained from familiar AdS/CFT technlques by computing Witten
diagrams in AdS, ..

" Ads,
AdS,

ou,)
“oq,) R¢
o
~0t,)

* E.g., the leading tree level connected term just involves contact 4-point
interactions, with Witten diagram
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Some comments

* These calculations are technically very similar to Witten diagram
calculations in SUGRA in AdS.xS>, but the interpretation is a bit different

* In the SUGRA case, one computes correlation functions of single trace local
operators like, trZ’, dual to closed string states. The expansion parameter is
Gy~ 1/N?

* In our case, we compute correlators of insertions inside the Wilson loop
trace (it is an expectation value of a single trace, non-local operator), dual
to open string fluctuations. The expansion parameter is the worldsheet
sigma-model coupling, i.e. string tension or 1/v\
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Summary of 4-point function result from string theory &Q

* Let us consider just the 4-point function of the S° fluctuations y? , dual to the
A=1 operator insertions ®? on the line defect.

* The 4pt function is specified by a function of cross ratio (multiplied by the fixed
prefactor 1/(t,, t3;)%). We can decompose it in the singlet (S), symmetric
traceless (T) and antisymmetric (A) channels of SO(5). Calculation of AdS, Witten
diagrams gives

2(x* = +9?% - 10x+5)  x*(2x* — 11x3 + 21x% — 20x + 10)

W) = - | , _ : 2 log |x
2x* — 5x3 = 5x + 10 t1ats.
: X )_.X'r )_"‘(: + : ]“g | | — Xl X X = 12034
5X | t13t24
L2 (0.2 G ‘ LA (L2 I B
) -3 +3) (¢ -8 +3) g
Gr(X) = ——; 3 + : log [x| = x" log |1 — x| ,
o 2~ 1)? Gr=ap e ksl
(1 x(=2x° +5x* -3x+2) x°(x’—4x*+6x—4 . |
GY () = ( Ax— 1) ) + ( PEEIE ) log [x| = (x* = x* = 1) log [1 = x|

(SG, Roiban, Tseytlin ‘17)
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Extracting OPE data

* From the small y expansion we can read off the anomalous dimensions
and OPE coefficients of “two-particle” operators appearing in the OPE

O.: Oh OA
G(X) =D _caamx" 2Fi(h,h,2h, ) > <

h O O,

* The lowest-lying unprotected operator is the singlet “2-particle” bound
state y? y? , whose dimension turns out to be

5)
Ayayu.:Q———i—....

v
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The dimension of the ®°insertion

* At weak coupling, the lowest dimension singlet, unprotected operator in the
defect primary spectrum is ®°: this is the insertion of the scalar that
appears in the Wilson loop exponent

* Its dimension is known to 1-loop order (aiday, Maldacena ‘07; Polchinski,Sully “11)

A
=+

|74

A(I)U — 1 _+_

* It is natural to expect that this operator smoothly goes to the lowest
unprotected singlet at strong coupling, i.e .the “2-particle” operator y? y2.
So we expect at strong coupling

5!

A(I)U pr— 2 -

+...

<
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Exact results from localization

* |t turns out to be possible to derive a number of exact results for the
correlators of a special type of protected insertions on the Wilson loop

* To use localization, we consider the 1/2-BPS circular loop rather than straight
line. Correlators on the circle are related to those on the line by a conformal
transformation, e.g.

| Ce¢ C'¢
(Oa(t)0a(tE2)iine = x = ({OA(T1)OA(T2)))circle = ————5x
t15 (‘2 sin %)

and similarly for 4-point functions, with cross ratio now given by

sin T2 gin B34

2 2
T13 v 724
% sin 24

SN
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Exact results from localization

* Recall that the expectation value of the circular loop is given exactly by the
Gaussian matrix model (Erickson, Semenoff, Zarembo ‘00; Drukker, Gross ‘00; Pestun ‘09)

2 L(VN)

Weirele DM LM =R N2
P = / N G

* To derive exact results for correlators of insertions on the Wilson loop, we
will need to consider a more general family of 1/8-BPS Wilson loops
constructed in Drukker, SG, Ricci, Trancanelli ‘07

* These Wilson loops are defined on generic contours on an S? subspace of R*
(or S%), and couple to three of the six scalar fields, say ®?!, ®?, O3
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The 1/8-BPS Wilson loops

* Explicitly, take an S? given by 27 + 25 + 23 = 1 in Cartesian coordinates, and define
the Wilson loop operator

1 - o ha
W= —trP [({_¢(-.(L‘4J+tkﬂa, P )d.t, ] L
~N

X1

* This preserves 1/8 of the superconformal symmetries for generic contour

* The 1/2-BPS circle is a special case: it corresponds to the contour being a great
circle of S?

* |t was conjectured in Drukker et al '07, and essentially proved in pestun 09 by
localization, that the expectation value, as well as correlators of any number of
Wilson loops on the S?, is captured by 2d YM theory (more precisely its truncation
to the “zero-instanton” sector)
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The 1/8-BPS Wilson loops

* This in particular implies that the expectation value only depends on the area
singled out by the loop on S? o
. R4\

* The expectation value is given by the same function as for the 1/2-BPS circular
loop, but with a rescaled coupling constant. E.g. in the planar limit:

I A(dr — A
(VN v = AUr—A),

N 472

(W(A)) =

with A=27 being the 1/2-BPS case
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1/8-BPS Wilson loops and local operators

* More generally, localization applies to general correlation functions of Wilson loops
and local operators (sG, Pestun 09-'12)

(W, (C1)Way(C2) - 04 (x1) Oy (x2) -+ Jaa

= (WRY(CL)WEL(Ca) - tr Fyl(xa) tr Fy2(x2) -+ )2d ym

* The relevant local operators may be inserted inside the Wilson loop trace, or
in the “bulk”, and they involve the position-dependent combination of
scalars

. i~ 9 ‘ ‘
(.1_'1(1)1 + _1_'2(1)2 ‘Jr‘ _1_'3(1)3 + 'f_(l);l)'}r = (1)']? _17? + J"‘j + ,25 s— l
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1/8-BPS Wilson loops and local operators

* These are just chiral primaries of the form (Y- ®)’, with Y a null vector which is
taken to be position dependent. They were first studied in Drukker, Plefka '09

* A crucial property is that their correlation functions are position independent.

* In the localization approach, they are mapped to insertions of powers of the Hodge
dual of the 2d YM field strength:

o~

b > S de
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Correlators on the Wilson loop

* Focusing on our problem of defect correlators on the circular loop, this means that
localization allows us to study correlators of the operators

o7 = (Yi(ri) - d(1;))’ Y; = (cos 7, sin7;,0,4,0,0)

* These operators form a “topological subsector” of the defect CFT, since their n-
point correlation functions

~

<(i)Ll (Tl)(i)[lz(TQ) T (I)L“ (Tn)> circle

are completely position independent
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Defect CFT data from topological correlators

* Note that the 2-point and 3-point functions of the general defect chiral primaries
are completely fixed by symmetries up to overall functions of the coupling

; } 5r, 1, (Y1 - Yol
(Y- @) (1) (Y- )" (72)Deirete = np, (A, N) Lika (V1 - Y2)

(Vi ®)(r) (Ve B)2(7) (V- 9)(ra) e bt M)

(Yl . }.»:2)."12\:;(}/22 . }.f;*)hz_-m (}i Y, ){"iilll’

¢ 4 D 2L AN ¢ . DR ZL ¢ * . 21—‘ ¥
(2sin T2) 77129 (2gin 28) 70 (2gin T8L) T

So we can use localization for the “topological correlators” to find the exact 2-point
normalization and structure constants of the general chiral primaries on the defect.

* Of course, for higher-point functions, one cannot fully reconstruct the general
correlators from the topological ones.
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Correlators from localization

* Using the localization correspondence
(i) <7 E: FZd

and area-preserving invariance in 2d YM, one can obtain correlators of L-point
scalar insertions by taking multiple area-derivatives of the Wilson loop VEV

= - ol (w)
<|(I) ’ ); ’ (I)I> lcir(_‘l(} — (0‘4)[‘

A=2r

* E.g. for the 2-point function, we get for the normalized correlator

. . 0)? ) )
O(11)D(72))) = —— log (W (A = —
(@(r) (7)) = 575 los(IW ()] TN

A=2r 1772

which gives the Bremsstrahlung function B(2)
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The general composite operators

* For general operators ¢/ = (Y;(r,) - ®(7:))’, one needs to define the properly
normal-ordered composite operators

* This can be accomplished systematically by a Gram-Schmidt orthogonalization
procedure (sG, Komatsu ‘18)

* In the planar limit, one gets the explicit form of the charge-L operators as a
determinant

<W)l ()4;)(1) <W>(j) ) (W) <W>(1) (W)U 1)
S|P e b _| T ®
;(i)L;:_ o : :
L omE=D ganE) o gy L) f— -
MO O A e
L

with (W)™ = (9,)k (W)

* This allows to obtain exact results for all correlation functions in the topological
subsector
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Some explicit 3-point function results

(:D%::®::d:)) = ((:B2:: D))
A2, (\/X) 9 51\ 3Ny (\/X) B 3\/X(A + 40)1, (\/X) . 37

. + 32 6 - . 4 6
32761, (\/X)-’* 321° g6y, (\/X)? 32761, (\/X) i

(D% @2t ) = (%932

((:&’2::&)2::&)2:)} = —

NG+ 72)]; (\/X) T 3VA(127A + 1920)], (v’X) 3 3(A(2\ 4 579) + 6192)1; (\/X) :

(D303 9% ) = — 5
ot () (A (A)(A) o ()
3(AGA — 757) — 6336)11 (VA) Io (\/X) 39N — 112) +4960) + 34176)11 (V) 2
+
3278V A (I{) (\/X) = =1 \:X ) 2 25678\ (\/X) B
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Weak and Strong coupling checks

* One may test the exact results for the correlators

m

GOLrple Pl sy = fd,u H QL. ()
‘ k=1

in the weak and strong coupling limit (where Q,(x) turn out to be related to
Chebyshev and Hermite polynomials respectively)

* We have checked that the first two orders in perturbation theory both at
weak and strong coupling indeed precisely agree with the exact predictions

* On the string theory side, we essentially need to compute correlation
functions of products of S° fluctuations (v (7). )" = 4", bringing the insertion
points of these operators to the boundary of AdS,
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Non-supersymmetric Wilson loop

* |t is natural to also study the ordinary Wilson loop operator
trPet 4

* For smooth contours, there are no logarithmic divergences in its expectation
value

* When the contour is a line or circle, the operator preserves again an SL(2,R)
conformal symmetry

* Correlation functions of operator insertions should then define a non-
supersymmetric defect CFT with SL(2,R)xSO(3)xSO(6) symmetry
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A defect RG flow

* |t is useful to consider a more general operator interpolating between the
ordinary Wilson loop and the Maldacena-Wilson loop

” 7€) — tl-p(.f i..f1+<¢[)6

* For generic C, there are logarithmic divergences and C develops a non-trivial
beta function. At weak coupling it can be computed to be (aiday, Maidacena 07;
Polchinski,Sully ‘11) \

B = =551 =)+ O(NV)

-
8“”

* (=0 and =1 are conformal fixed points corresponding to the ordinary and
1/2-BPS Wilson loop
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A defect RG flow

* The dimension of ®° at the fixed points at weak coupling can be found to be

_ A
A(l) =1 AQ)=1-—+...
(=14 5+ 0)=1- 5+

* Since ®° is a slightly relevant defect operator at £ = 0, running of C can be
interpreted as a defect RG flow between the non-susy Wilson loop in the UV
and the 1/2-BPS Maldacena-Wilson loop in the IR

* It is natural to expect that F = log<W> plays the role of a d=1 “defect free
energy”, that should satisfy

I:UV > FIR

(see Kobayashi, Nishioka, Sato, Watanabe ‘18 and Nishioka’s talk)
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* A direct perturbative calculation (Beccaria, SG, Tseytlin ‘17) gives

1 1 1 - .
Oy — 14 = 1 — ¢2)2] )2 )\3
W) i 8/\+ [192 . 1287r2( <) }/\ +O(X)

which indeed satisfies
log(W(O)) > log(W(l))

The inequality can be also shown to hold at strong coupling, where one finds

<I_.‘[.'(())> -~ \/X(\/X (‘[’(l)> - )\—.‘%/»-.I(_]\& /\ > 1
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Ordinary Wilson loop at strong coupling

* The dual of the ordinary Wilson loop trPed ' at strong coupling should
be a string worldsheet with Neumann, rather than Dirichlet, boundary
conditions on S° (Alday, Maldacena ‘07; Polchinski,Sully *11)

* For circular/straight Wilson loop, the worldsheet is still AdS,, but it does not
sit at a point on S°, rather we should integrate over 5 zero modes
representing the position on S°

* More explicitly, using S*> embedding coordinates Y* (YAYA=1), we may write
YA — /-l L C2 1”’/1 _I_ C/l n_,‘C‘,l — 0

with C* (o) fluctuations obeying Neumann conditions, and integration over
the constant unit vector n” restores SO(6) symmetry
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Correlation functions at strong coupling

* Similarly to the case of the 1/2-BPS loop, one can compute 4-point functions
of scalar insertions from the AdS, worldsheet theory. Considerably more
complicated due to Neumann boundary conditions and logarithmic

propagators b oot .
. . . . LC*’ nA CO)\ .113("’ n LC‘) nA )\ ,‘!‘,C"’ nA
* Explicit result for scalar 4-point function 1 \, ;’[7"‘,
(Beccaria, SG, Tseytlin “19) <’;‘,_=~--_T—,"<“ SO G
" a) (b)
. \ = 5 1 —%Cnrfn ’.--~“—%Cg?ﬁ‘ —%Cjtfz ""‘\‘_%anﬁ
(YO (t)Y (t2)Y 7 (t3)Y 7 (ta)) = 55 Gs - ) { )
|t1ot3q]?2 el >’L’“ o B "c”
(¢) (d)
_ 10 201 — v 1 (3) (1 .
GS =1 + (ﬁ)g 10{-5 (l X) + (\ﬁ):; GS + 0((ﬁ);) ) A . ~ A
GE;}) =80 [Li_-;(x) + Li;;(x—’(_j) — Lia(x) log(1 — )\)} + 40 log 14_? log?(1 — x) 3X:
2 L e B
— 10 13_%( log x +5 (5 - % - 2)() log(1 — x) — 50 + 4 dy log?(1 — X) -
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Conclusion

* Correlation functions on the straight/circular Wilson loop have the structure of a
d=1 conformal system living on the defect

* Correlator of operator insertions on the loop are dual to AdS, amplitudes for the
fluctuations of the open string worldsheet
* |s there a manifestation of integrability in the AdS, amplitudes? AdS, analog of S-
matrix factorization? (Mellin amplitudes for 1d CFT?)

* For the defect CFT on the 1/2-BPS Wilson loop, exact results may be obtained in a
“topological subsector” of special operator insertions

* Perhaps combining information from localization, integrability and bootstrap
techniques (Liendo, Meneghelli ‘16, Liendo, Meneghelli, Mitev '18. Also Mazac, Paulos '18-’19...) ONe may be
able to solve this defect CFT

* The non-supersymmetric Wilson loop in N=4 SYM define another interesting, non-
supersymmetric defect CFT.
* Integrability?  (Correa, Leoni, Lugue '18)
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Conclusion

* Some other directions
* Higher-point functions (localization checks; signs of integrability?...)
* Loops in the AdS, worldsheet theory (1/V/\ corrections to defect CFT, data)

* Wilson loops in more general representations

* “Giant Wilson loops”: rank k~-N symmetric/antisymmetric representations dual
to D3/D5 branes with AdS,xS? and AdS,xS* worldvolumes

* “Bubbling Geometries”
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Bulk-defect correlators
* So far | focused mainly on correlators of defect operators, which are captured by
the AdS, open string worldsheet theory

* But one more generally can also consider also “bulk-defect” correlators:
correlation functions of the Wilson and single-trace operators inserted away from
the loop, e.g. <W trZ’>, <W[O(t)] trZ’>...

* This correspond to an “open-closed” string amplitude of the schematic form (to
leading order):

Localization: (sG, komatsu ’18)

AdS, - | :
AdS W[ ] 2" ]tx[@7]) ~ j;ﬁ dp B(x) [ [ Qu.(x)
k=1 k=1
B -*17?_(1.1'J+1
5 HHE)= 1+ x2
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